Skip to main content

A Big Survey on Biometrics for Human Identification

  • Chapter
  • First Online:
Prognostic Models in Healthcare: AI and Statistical Approaches

Abstract

Biometrics are a branch of science that is used to identify as well as authenticate. Biometrics are basically of two types: behavioral biometrics and physiological biometrics. Characteristics and biometrics are fundamentally fixed and unique, allowing individuals to distinguish one from another. Biometric authentication systems have received more attention in recent years than other traditional authentication methods such as passwords or signatures. All human biological traits are unique as biometrics such as fingerprints, palms, irises, palm blood vessels and fingerprint blood vessels, and other biometrics. Biometric identification systems basically have a complex structure that consists of different parts. Biometric-based authentication systems and authentication methods, along with other authentication systems, can improve the security aspects of authentication systems. Identification methods and tools are used in many important and essential applications such as surveillance processes, security investigations, fraud detection technologies, and access controls. Biometric-based identification methods in machine learning consist mainly of preprocessing, feature extraction, feature selection, classification, and finally evaluation. These systems can also be based on one biometric or based on several biometrics together. In this chapter, we examine the methods of identifying identity information with the help of various biometrics, highlight the challenges in each biometrics, and introduce the solutions that have been proposed to overcome this challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rahim, M.S.M., Rehman, A., Kurniawan, F., Saba, T.: Ear biometrics for human classification based on region features mining. Biomed. Res. 28(10), 4660–4664 (2017)

    Google Scholar 

  2. Jabeen, S., Mehmood, Z., Mahmood, T., Saba, T., Rehman, A., Mahmood, M.T.: An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PLoS ONE 13(4), e0194526 (2018)

    Google Scholar 

  3. Abbas, N., Saba, T., Mohamad, D., Rehman, A., Almazyad, A.S., Al-Ghamdi, J.S.: Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears. Neural Comput. Appl. 29(3), 803–818 (2018)

    Google Scholar 

  4. Rehman, A., Harouni, M., Karimi, M., Saba, T., Bahaj, S.A., Awan, M.J.: Microscopic retinal blood vessels detection and segmentation using support vector machine and K‐nearest neighbors. Microsc. Res. Tech. 85(5), 1899–1914 (2022)

    Google Scholar 

  5. Amin, J., Sharif, M., Raza, M., Saba, T., Rehman, A.: Brain tumor classification: feature fusion. In: 2019 International Conference on Computer and Information Sciences (ICCIS), pp. 1–6. IEEE (2019)

    Google Scholar 

  6. Khan, A.R., Doosti, F., Karimi, M., Harouni, M., Tariq, U., Fati, S.M., et al.: Authentication through gender classification from iris images using support vector machine. Microsc. Res. Tech. 84(11), 2666–2676 (2021)

    Google Scholar 

  7. Saba, T., Rehman, A., Altameem, A., Uddin, M.: Annotated comparisons of proposed preprocessing techniques for script recognition. Neural Comput. Appl. 25(6), 1337–1347 (2014). https://doi.org/10.1007/s00521-014-1618-9

  8. Shaheed, K., Mao, A., Qureshi, I., Kumar, M., Abbas, Q., Ullah, I., et al.: A systematic review on physiological-based biometric recognition systems: current and future trends. Arch. Comput. Methods Eng., 1–44 (2021)

    Google Scholar 

  9. Harouni, M., Karimi, M., Rafieipour, S.: Precise segmentation techniques in various medical images. In: Artificial Intelligence and Internet of Things: Applications in Smart Healthcare, p. 117 (2021)

    Google Scholar 

  10. Iqbal, S., Khan, M.U.G., Saba, T., Mehmood, Z., Javaid, N., Rehman, A., Abbasi, R.: Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation. Microsc. Res. Tech. 82(8), 1302–1315 (2019). https://doi.org/10.1002/jemt.23281

    Article  Google Scholar 

  11. Karimi, M., Harouni, M., Nasr, A., Tavakoli, N.: Automatic lung infection segmentation of covid-19 in CT scan images. In: Intelligent Computing Applications for COVID-19, pp. 235–253. CRC Press (2021)

    Google Scholar 

  12. Patua, R., Muchhal, T., Basu, S.: Gait-based person identification, gender classification, and age estimation: a review. In: Progress in Advanced Computing and Intelligent Engineering, pp. 62–74 (2021)

    Google Scholar 

  13. Karimi, M., Harouni, M., Rafieipour, S.: Automated medical image analysis in digital mammography. In: Artificial Intelligence and Internet of Things, pp. 85–116. CRC Press (2021)

    Google Scholar 

  14. Harouni, M., Mohamad, D., Rasouli, A. (eds.): Deductive method for recognition of on-line handwritten Persian/Arabic characters. In: 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE). IEEE (2010)

    Google Scholar 

  15. Harouni, M., Rahim, M., Al-Rodhaan, M., Saba, T., Rehman, A., Al-Dhelaan, A.: Online Persian/Arabic script classification without contextual information. Imag. Sci. J. 62(8), 437–448 (2014)

    Google Scholar 

  16. Mohammadi Dashti, M., Harouni, M.: Smile and laugh expressions detection based on local minimum key points. Sig. Data Process. 15(2), 69–88 (2018)

    Google Scholar 

  17. Rehman, A., Harouni, M., Karchegani, N.H.S., Saba, T., Bahaj, S.A., Roy, S.: Identity verification using palm print microscopic images based on median robust extended local binary pattern features and k‐nearest neighbor classifier. Microsc. Res. Tech. 85(4), 1224–1237 (2021).

    Google Scholar 

  18. Khan, M.Z., Jabeen, S., Khan, M.U.G., Saba, T., Rehmat, A., Rehman, A., Tariq, U.: A realistic image generation of face from text description using the fully trained generative adversarial networks. IEEE Access 9, 1250–1260 (2020)

    Google Scholar 

  19. Meethongjan, K., Dzulkifli, M., Rehman, A., Altameem, A., Saba, T.: An intelligent fused approach for face recognition. J. Intell. Syst. 22(2), 197–212 (2013). https://doi.org/10.1515/jisys-2013-0010

  20. Amin, J., Sharif, M., Rehman, A., Raza, M., Mufti, M.R.: Diabetic retinopathy detection and classification using hybrid feature set. Microsc. Res. Tech. 81(9), 990–996 (2018)

    Google Scholar 

  21. Iftikhar, S., Fatima, K., Rehman, A., Almazyad, A.S., Saba, T.: An evolution based hybrid approach for heart diseases classification and associated risk factors identification. Biomed. Res. 28(8), 3451–3455 (2017)

    Google Scholar 

  22. Qayoom, I., Naaz, S.: Review on secure and authentic identification system using finger veins. Int. J. Adv. Res. Comput. Sci. 8(5) (2017)

    Google Scholar 

  23. Rehman, A., Sadad, T., Saba, T., Hussain, A., Tariq, U.: Real-time diagnosis system of COVID-19 using X-ray images and deep learning. IEEE IT Prof. 23(4), 57–62 (2021). https://doi.org/10.1109/MITP.2020.3042379

  24. Singh, A., Singh, D.: Palm vein recognition technology: a literature survey. Int. J. Solid State Mater. 5(1), 46–51 (2019)

    Google Scholar 

  25. Aurangzeb, K., Haider, I., Khan, M.A., Saba, T., Javed, K., Iqbal, T., Rehman, A., Ali, H., Sarfraz, M.S.: Human behavior analysis based on multi-types features fusion and Von Nauman entropy based features reduction. J. Med. Imag. Health Inf. 9(4), 662–669 (2019)

    Google Scholar 

  26. Mughal, B., Muhammad, N., Sharif, M., Saba, T., Rehman, A.: Extraction of breast border and removal of pectoral muscle in wavelet, domain. Biomed. Res. 28(11), 5041–5043 (2017)

    Google Scholar 

  27. Yang, W., Wang, S., Hu, J., Zheng, G., Valli, C.: Security and accuracy of fingerprint-based biometrics: a review. Symmetry 11(2), 141 (2019)

    Google Scholar 

  28. Kavati, I., Prasad, M.V., Bhagvati, C.: Search space reduction in biometric databases: a review. In: Computer Vision: Concepts, Methodologies, Tools, and Applications, pp. 1600–1626. IGI Global (2018)

    Google Scholar 

  29. Sharif, M., Naz, F., Yasmin, M., Shahid, M.A., Rehman, A.: Face recognition: a survey. J. Eng. Sci. Technol. Rev. 10(2), 166–177 (2017)

    Google Scholar 

  30. Perveen, S., Shahbaz, M., Saba, T., Keshavjee, K., Rehman, A., Guergachi, A.: Handling irregularly sampled longitudinal data and prognostic modeling of diabetes using machine learning technique. IEEE Access 8, 21875–21885 (2020)

    Google Scholar 

  31. Khan, A.R., Khan, S., Harouni, M., Abbasi, R., Iqbal, S., Mehmood, Z.: Brain tumor segmentation using K‐means clustering and deep learning with synthetic data augmentation for classification. Microsc. Res. Tech. 84(7):1389–1399 (2021)

    Google Scholar 

  32. Adapa, D., Joseph Raj, A.N., Alisetti, S.N., Zhuang, Z., Naik, G.: A supervised blood vessel segmentation technique for digital Fundus images using Zernike moment based features. PLoS ONE 15(3), e0229831 (2020)

    Google Scholar 

  33. Raftarai, A., Mahounaki, R.R., Harouni, M., Karimi, M., Olghoran, S.K.: Predictive models of hospital readmission rate using the improved AdaBoost in COVID-19. In: Intelligent Computing Applications for COVID-19, pp. 67–86. CRC Press (2021)

    Google Scholar 

  34. Mughal, B., Sharif, M., Muhammad, N., Saba, T.: A novel classification scheme to decline the mortality rate among women due to breast tumor. Microsc. Res. Tech. 81(2), 171–180 (2018). https://doi.org/10.1002/jemt.22961

  35. Heisele, B., Ho, P., Poggio, T. (eds.): Face recognition with support vector machines: global versus component-based approach. In: Proceedings Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001. IEEE (2001)

    Google Scholar 

  36. Günther, M., Würtz, R.P.: Face detection and recognition using maximum likelihood classifiers on Gabor graphs. Int. J. Pattern Recognit. Artif. Intell. 23(03), 433–461 (2009)

    Google Scholar 

  37. Yu, L., He, Z., Cao, Q.: Gabor texture representation method for face recognition using the Gamma and generalized Gaussian models. Image Vis. Comput. 28(1), 177–187 (2010)

    Google Scholar 

  38. Farokhi, S., Sheikh, U.U., Flusser, J., Yang, B.: Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci. 316, 234–245 (2015)

    Google Scholar 

  39. Lukas, S., Mitra, A.R., Desanti, R.I., Krisnadi, D.: Implementing discrete wavelet and discrete cosine transform with radial basis function neural network in facial image recognition. J. Image Graph. 4(1) (2016).

    Google Scholar 

  40. Banerjee, P.K., Datta, A.K.: Band-pass correlation filter for illumination-and noise-tolerant face recognition. SIViP 11(1), 9–16 (2017)

    Google Scholar 

  41. Li, M., Yu, X., Ryu, K.H., Lee, S., Theera-Umpon, N.: Face recognition technology development with Gabor, PCA and SVM methodology under illumination normalization condition. Clust. Comput., 1–10 (2017)

    Google Scholar 

  42. Paria, E., Cardenas, R., Gutierrez, J., Galdos, J. (eds.): An improved face recognition based on illumination normalization techniques and elastic bunch graph matching. In: Proceedings of the International Conference on Compute and Data Analysis. ACM (2017)

    Google Scholar 

  43. Tu, X., Gao, J., Xie, M., Qi, J., Ma, Z.: Illumination normalization based on correction of large-scale components for face recognition. Neurocomputing 266, 465–476 (2017)

    Google Scholar 

  44. Wang, K., Chen, Z., Wu, Q.J., Liu, C.: Illumination and pose variable face recognition via adaptively weighted ULBP_MHOG and WSRC. Sig. Process. Image Commun. 58, 175–186 (2017)

    Google Scholar 

  45. Yu, Y.-F., Dai, D.-Q., Ren, C.-X., Huang, K.-K.: Discriminative multi-layer illumination-robust feature extraction for face recognition. Pattern Recogn. 67, 201–212 (2017)

    Google Scholar 

  46. Wu, X., Fang, B., Tang, Y.Y., Zeng, X., Xing, C.: Reconstructed error and linear representation coefficients restricted by ℓ1-minimization for face recognition under different illumination and occlusion. Math. Probl. Eng. 2017, 1–16 (2017)

    Google Scholar 

  47. Satange, D., Alsubari, A., Ramteke, R. (eds.): Composite feature extraction based on Gabor and Zernike moments for face recognition. In: IOSR-JCE, International Conference on Recent Advance in Computer Science, Engineering and Technology, Aurangabad (2017)

    Google Scholar 

  48. Nakada, M., Wang, H., Terzopoulos, D. (eds.): AcFR: active face recognition using convolutional neural networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE (2017)

    Google Scholar 

  49. Fan, C., Wang, S., Zhang, H.: Efficient Gabor phase based illumination invariant for face recognition. In: Advances in Multimedia (2017)

    Google Scholar 

  50. McLaughlin, N., Ming, J., Crookes, D.: Largest matching areas for illumination and occlusion robust face recognition. IEEE Trans. Cybernet. 47(3), 796–808 (2017)

    Google Scholar 

  51. Harouni, M., Baghmaleki, H.Y.: Color image segmentation metrics. In: Encyclopedia of Image Processing, p. 95 (2018)

    Google Scholar 

  52. Tajbakhsh, N., Araabi, B., Soltanian-Zadeh, H.: Robust iris verification based on local and global variations. EURASIP J. Adv. Sig. Process. 2010(1), 979058 (2010)

    Google Scholar 

  53. Radman, A., Jumari, K., Zainal, N.: Iris segmentation in visible wavelength environment. Proc. Eng. 41, 743–748 (2012)

    Google Scholar 

  54. Raja, K.B., Raghavendra, R., Vemuri, V.K., Busch, C.: Smartphone based visible iris recognition using deep sparse filtering. Pattern Recogn. Lett. 57, 33–42 (2015)

    Google Scholar 

  55. Jillela, R.R., Ross, A.: Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recogn. Lett. 57, 4–16 (2015)

    Google Scholar 

  56. Liu, Y., He, F., Zhu, X., Liu, Z., Chen, Y., Han, Y., et al.: The improved characteristics of bionic Gabor representations by combining with sift key-points for iris recognition. J. Bionic Eng. 12(3), 504–517 (2015)

    Google Scholar 

  57. Li, C., Zhou, W., Yuan, S.: Iris recognition based on a novel variation of local binary pattern. Vis. Comput. 31(10), 1419–1429 (2015)

    Google Scholar 

  58. Salve, S.S., Narote, S. (eds.): Iris recognition using SVM and ANN. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). IEEE (2016)

    Google Scholar 

  59. Suciati, N., Anugrah, A.B., Fatichah, C., Tjandrasa, H., Arifin, A.Z., Purwitasari, D., et al. (eds.): Feature extraction using statistical moments of wavelet transform for iris recognition. In: 2016 International Conference on Information and Communication Technology and Systems (ICTS). IEEE (2016)

    Google Scholar 

  60. Trokielewicz, M., Czajka, A., Maciejewicz, P.: Implications of ocular pathologies for iris recognition reliability. Image Vis. Comput. 58, 158–167 (2017)

    Google Scholar 

  61. Umer, S., Dhara, B.C., Chanda, B.: A novel cancelable iris recognition system based on feature learning techniques. Inf. Sci. 406, 102–118 (2017)

    Google Scholar 

  62. Ray, A., Mahapatra, N., Das, S.S., Mishra, A.: Iris recognition using Gabor filter and SURF feature detection technique. IUP J. Inf. Tech. 14(2), 53–61 (2018)

    Google Scholar 

  63. Llano, E.G., Vázquez, M.S.G., Vargas, J.M.C., Fuentes, L.M.Z., Acosta, A.A.R.: Optimized robust multi-sensor scheme for simultaneous video and image iris recognition. Pattern Recogn. Lett. 101, 44–51 (2018)

    Google Scholar 

  64. Păvăloi, I., Niţă, C.D., Lazăr, L.C. (eds.): Novel matching method for automatic iris recognition using SIFT features. In: 2019 International Symposium on Signals, Circuits and Systems (ISSCS). IEEE (2019)

    Google Scholar 

  65. Choudhary, M., Tiwari, V., Venkanna, U.: Enhancing human iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models. Soft Comput. 24(15), 1–15 (2019)

    Google Scholar 

  66. Abirami, M., Vasavi, J.: A qualitative performance comparison of supervised machine learning algorithms for iris recognition. Eur. J. Mol. Clin. Med. 7(6), 1937–1946 (2020)

    Google Scholar 

  67. Abdo, A.A., Lawgali, A., Zohdy, A.K. (eds.): Iris recognition based on histogram equalization and discrete cosine transform. In: Proceedings of the 6th International Conference on Engineering and MIS 2020 (2020)

    Google Scholar 

  68. Khuzani, A.Z., Mashhadi, N., Heidari, M., Khaledyan, D.: An approach to human iris recognition using quantitative analysis of image features and machine learning. arXiv preprint arXiv:200905880 (2020)

    Google Scholar 

  69. Liu, Z., Yin, Y., Wang, H., Song, S., Li, Q.: Finger vein recognition with manifold learning. J. Netw. Comput. Appl. 33(3), 275–282 (2010)

    Google Scholar 

  70. Yang, J., Li, X. (ed.) Efficient finger vein localization and recognition. In: 2010 International Conference on Pattern Recognition. IEEE (2010)

    Google Scholar 

  71. Guan, F., Wang, K., Yang, Q. (eds.): A study of two direction weighted (2D) 2 LDA for finger vein recognition. In: 2011 4th International Congress on Image and Signal Processing (CISP). IEEE (2011)

    Google Scholar 

  72. Lee, E.C., Jung, H., Kim, D.: New finger biometric method using near infrared imaging. Sensors 11(3), 2319–2333 (2011)

    Google Scholar 

  73. Yang, W., Rao, Q., Liao, Q. (eds.): Personal identification for single sample using finger vein location and direction coding. In: 2011 International Conference on Hand-Based Biometrics (ICHB). IEEE (2011)

    Google Scholar 

  74. Rosdi, B.A., Shing, C.W., Suandi, S.A.: Finger vein recognition using local line binary pattern. Sensors 11(12), 11357–11371 (2011)

    Google Scholar 

  75. Damavandinejadmonfared, S. (ed.): Finger vein recognition using linear kernel entropy component analysis. In: 2012 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE (2012)

    Google Scholar 

  76. Mobarakeh, A.K., Rizi, S.M., Khaniabadi, S.M., Bagheri, M.A., Nazari, S. (eds.): Applying weighted K-nearest centroid neighbor as classifier to improve the finger vein recognition performance. In: 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE). IEEE (2012)

    Google Scholar 

  77. Harsha, P., Subashini, C. (eds.): A real time embedded novel finger-vein recognition system for authenticated on teller machine. In: 2012 International Conference on Emerging Trends in Electrical Engineering and Energy Management (ICETEEEM). IEEE (2012)

    Google Scholar 

  78. Meng, X., Yang, G., Yin, Y., Xiao, R.: Finger vein recognition based on local directional code. Sensors 12(11), 14937–14952 (2012)

    Google Scholar 

  79. Yang, J., Shi, Y.: Towards finger-vein image restoration and enhancement for finger-vein recognition. Inf. Sci. 268, 33–52 (2014)

    Google Scholar 

  80. Yang, G., Xiao, R., Yin, Y., Yang, L.: Finger vein recognition based on personalized weight maps. Sensors 13(9), 12093–12112 (2013)

    Google Scholar 

  81. Lu, Y., Yoon, S., Xie, S.J., Yang, J., Wang, Z., Park, D.S. (eds.): Finger vein recognition using histogram of competitive Gabor responses. In: 2014 22nd International Conference on Pattern Recognition (ICPR). IEEE (2014)

    Google Scholar 

  82. Vlachos, M., Dermatas, E.: Finger vein segmentation from infrared images based on a modified separable Mumford Shah model and local entropy thresholding. Comput. Math. Methods Med. (2015)

    Google Scholar 

  83. Gupta, P., Gupta, P.: An accurate finger vein based verification system. Digital Signal Process. 38, 43–52 (2015)

    Google Scholar 

  84. Wu, J.-D., Liu, C.-T.: Finger-vein pattern identification using SVM and neural network technique. Expert Syst. Appl. 38(11), 14284–14289 (2011)

    Google Scholar 

  85. Wu, J.-D., Liu, C.-T.: Finger-vein pattern identification using principal component analysis and the neural network technique. Expert Syst. Appl. 38(5), 5423–5427 (2011)

    Google Scholar 

  86. Hoshyar, A.N., Sulaiman, R., Houshyar, A.N.: Smart access control with finger vein authentication and neural network. J Am. Sci. 7(9) (2011)

    Google Scholar 

  87. Wang, K.-Q., Khisa, A.S., Wu, X.-Q., Zhao, Q.-S. (eds.): Finger vein recognition using LBP variance with global matching. In: 2012 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE (2012)

    Google Scholar 

  88. Khellat-Kihel, S., Cardoso, N., Monteiro, J., Benyettou, M. (eds.): Finger vein recognition using Gabor filter and support vector machine. In: 2014 First International Image Processing, Applications and Systems Conference (IPAS). IEEE (2014)

    Google Scholar 

  89. Radzi, S.A., Hani, M.K., Bakhteri, R.: Finger-vein biometric identification using convolutional neural network. Turk. J. Electr. Eng. Comput. Sci. 24(3), 1863–1878 (2016)

    Google Scholar 

  90. Mitica-Valentin, M., Ana-Maria, T., Ciprian, R.: Biometric security: recognition according to the pattern of palm veins. Sci. Bull. “Mircea cel Batran” Nav. Acad. 23(1), 257–262 (2020)

    Google Scholar 

  91. Hussein, I.S., Sahibuddin, S.B., Nordin, M.J., Sjarif, N.N.B.A.: Multimodal recognition system based on high-resolution palmprints. IEEE Access 8, 56113–56123 (2020)

    Google Scholar 

  92. Yang, L., Yang, G., Wang, K., Liu, H., Xi, X., Yin, Y.: Point grouping method for finger vein recognition. IEEE Access. 7, 28185–28195 (2019)

    Google Scholar 

  93. Xi, X., Yang, L., Yin, Y.: Learning discriminative binary codes for finger vein recognition. Pattern Recogn. 66, 26–33 (2017)

    Google Scholar 

  94. Qiu, X., Kang, W., Tian, S., Jia, W., Huang, Z.: Finger vein presentation attack detection using total variation decomposition. IEEE Trans. Inf. Forensics Secur. 13(2), 465–477 (2017)

    Google Scholar 

  95. Wang, M., Tang, D.: Region of interest extraction for finger vein images with less information losses. Multimed. Tools Appl. 76(13), 14937–14949 (2017)

    Google Scholar 

  96. Liu, H., Song, L., Yang, G., Yang, L., Yin, Y. (eds.): Customized local line binary pattern method for finger vein recognition. In: Chinese Conference on Biometric Recognition Springer (2017).

    Google Scholar 

  97. Soh, S.C., Ibrahim, M., Yakno, M.B., Mulvaney, D.J.: Palm vein recognition using scale invariant feature transform with RANSAC mismatching removal. In: IT Convergence and Security 2017, pp. 202–209. Springer (2018)

    Google Scholar 

  98. Fang, Y., Wu, Q., Kang, W.: A novel finger vein verification system based on two-stream convolutional network learning. Neurocomputing 290, 100–107 (2018)

    Google Scholar 

  99. Qin, H., El-Yacoubi, M.A.: Deep representation for finger-vein image-quality assessment. IEEE Trans. Circuits Syst. Video Technol. 28(8), 1677–1693 (2017)

    Google Scholar 

  100. Cancian, P., Di Donato, G.W., Rana, V., Santambrogio, M.D. (eds.): An embedded Gabor-based palm vein recognition system. In: 2017 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE (2017)

    Google Scholar 

  101. Akintoye, K.A., Shafry, M.R.M., Abdullah, A.H.: A novel approach for finger vein pattern enhancement using Gabor and Canny edge detector. Int. J. Comput. Appl. 157(2) (2017)

    Google Scholar 

  102. Brindha, S.: Finger vein recognition. Int. J. Renew. Energy Technol. 4, 1298–1300 (2017)

    Google Scholar 

  103. Wang, R., Wang, G., Chen, Z., Zeng, Z., Wang, Y.: A palm vein identification system based on Gabor wavelet features. Neural Comput. Appl. 24(1), 161–168 (2014)

    Google Scholar 

  104. Wu, K.-S., Lee, J.-C., Lo, T.-M., Chang, K.-C., Chang, C.-P.: A secure palm vein recognition system. J. Syst. Softw. 86(11), 2870–2876 (2013)

    Google Scholar 

  105. Bayoumi, S., Al-Zahrani, S., Sheikh, A., Al-Sebayel, G., Al-Magooshi, S., Al-Sayigh, S. (eds.): PCA-based palm vein authentication system. In: 2013 International Conference on Information Science and Applications (ICISA), 24–26 June 2013

    Google Scholar 

  106. Han, W.-Y., Lee, J.-C.: Palm vein recognition using adaptive Gabor filter. Expert Syst. Appl. 39(18), 13225–13234 (2012)

    Google Scholar 

  107. Jalali, A., Mallipeddi, R., Lee, M. (eds.): Deformation invariant and contactless palmprint recognition using convolutional neural network. In: Proceedings of the 3rd International Conference on Human-Agent Interaction (2015)

    Google Scholar 

  108. Chai, T., Prasad, S., Wang, S.: Boosting palmprint identification with gender information using DeepNet. Futur. Gener. Comput. Syst. 99, 41–53 (2019)

    Google Scholar 

Download references

Conflicts of Interest

There is no conflicts of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Karimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karimi, Z., Najafabadi, S.A., Nezhad, A.R., Ahmadi, F. (2022). A Big Survey on Biometrics for Human Identification. In: Saba, T., Rehman, A., Roy, S. (eds) Prognostic Models in Healthcare: AI and Statistical Approaches. Studies in Big Data, vol 109. Springer, Singapore. https://doi.org/10.1007/978-981-19-2057-8_14

Download citation

Publish with us

Policies and ethics