Skip to main content

Development of Calibrated and Validated SODAR with Reference of Air Quality Management

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Air pollution control necessitates knowledge of Atmospheric Boundary Layer (ABL) parameters that influence pollutant concentration, diffusion, and transit. The ABL is one of the most important constituent zones of the atmosphere, as it plays a critical role in major areas of human endeavor such as air pollution, aviation, and communication. It can also be thought of as the biosphere’s circulatory system. SOnic Detection And Ranging (SODAR) is an important ground-based remote sensor competent to detect ABL height in real time. It is utilized in air quality management as a diagnostic tool for monitoring air quality in a variety of hazardous circumstances that are directly related to human health issues. The present work focuses on the methods derived for probing the ABL using SODAR for effective air shed management. The data generated through SODAR echograms is processed, interpreted and compared with MERRA-2 Model sensor so as to determine its effectiveness and precision of data. After critical analysis it was observed that SODAR is an effectual environmentally friendly instrument that can be used for air pollution abatement and air quality measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Antoniou I, Jørgensen HE, Ormel F, Bradley S, von Hünerbein S, Emeis S, Warmbier G (eds) (2003) On the theory of SODAR measurement techniques. Risø National Laboratory, Roskilde

    Google Scholar 

  • Beran DW, Hall FF Jr (1974) Remote sensing for air pollution meteorology. Bull Am Meteorol Soc 55(9):1097–1106

    Article  ADS  Google Scholar 

  • Beran DW, Hooke WH, Clifford SF (1973) Acoustic echo-sounding techniques and their application to gravity-wave, turbulence, and stability studies. Bound-Layer Meteorol 4(1):133–153

    Article  ADS  Google Scholar 

  • Beran DW, Willmarth BC, Carsey FC, Hall FF Jr (1974) An acoustic Doppler wind measuring system. J Acoust Soc Am 55(2):334–338

    Article  ADS  Google Scholar 

  • Beyrich F (1997) Mixing height estimation from sodar data—a critical discussion. Atmos Environ 31(23):3941–3953

    Article  ADS  Google Scholar 

  • Bosilovich MG, Lucchesi R, Suarez M (2015) MERRA-2: file specification. Global Modeling and Assimilation Office, Earth Sciences Division, NASA Goddard Space Flight Center Greenbelt, Maryland 20771. https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf

  • Bradley S (2007) Atmospheric acoustic remote sensing: principles and applications. CRC Press

    Book  Google Scholar 

  • Bradley S, Antoniou I, Von Hunerbein S (2005) Sodar calibration procedure. In: Final Reporting on WP3, EU WISE Project NNE5-2001 297

    Google Scholar 

  • Brown EH, Hall FF (1978) Advances in atmospheric acoustics. Rev Geophys 16(1):47–110

    Article  ADS  Google Scholar 

  • Coulter RL, Kallistratova MA (2004) Two decades of progress in sodar techniques: a review of 11 ISARS proceedings. Meteorog Atmos Phys 85:3–19

    Article  ADS  Google Scholar 

  • Crescenti GH (1997) A look Back on two decades of doppler SODAR comparison studies. Bull Am Meteorol Soc 78:651–673

    Article  ADS  Google Scholar 

  • Dang R, Yang Y, Xiao-Ming H, Wang Z, Zhang S (2019) A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data. Remote Sens 11(13):1590

    Article  ADS  Google Scholar 

  • Danilov SD, Gur’Yanov AE, Kallistratova MA, Petenko IV, Singal SP, Pahwa DR, Gera BS (1992) Acoustic calibration of sodars. Meas Sci Technol 3(10):1001

    Article  ADS  Google Scholar 

  • Danilov SD, Guryanov AE, Kallistratova MA, Petenko IV, Singal SP, Pahwa D, Gera BS (1994) Simple method of calibration of conventional sodar antenna system. Int J Remote Sens 15:307–312

    Article  Google Scholar 

  • Emeis S (2010) Surface-based remote sensing of the atmospheric boundary layer, vol 40. Springer Science & Business Media

    Google Scholar 

  • Emeis S (2021) Sodar and RASS. In: Foken T (ed) Springer handbook of atmospheric measurements. Springer Handbooks, Springer, Cham, pp 663–684. https://doi.org/10.1007/978-3-030-52171-4_23

  • Emeis S, Schafer K, Munkel CH (2008) Surface-based remote sensing of the mixing-layer height-a review. Meteorol Z 17(5):621

    Article  Google Scholar 

  • Fortuna J, Kozaczka E (2014) Review of acoustical methods of probing the atmoshperic boundary layer. Arch Acoustics 17(4):453–510

    Google Scholar 

  • Fukushima M, Akita K-i, Tanaka H (1974) Sodar probing of small-scale ordered motions appeared in the atmospheric planetary boundary layer. J Meteorolog Soc Jpn 52(5):428–439

    Article  Google Scholar 

  • Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30(14):5419–5454

    Article  ADS  Google Scholar 

  • Georges TM, Clifford SF (1974) Estimating refractive effects in acoustic sounding. J Acoust Soc Am 55(5):934–936

    Article  ADS  Google Scholar 

  • Greenfield RJ, Teufel M, Thomson DW, Coulter RL (1974) A method for measurement of temperature profiles in inversions from refractive transmission of sound. J Geophys Res 79(36):5551–5554

    Article  ADS  Google Scholar 

  • Hall FF (1972) Temperature and wind structure studies by acoustic echo-sounding. Remote Sens Troposphere:18-1

    Google Scholar 

  • Harris CM (1963) Absorption of sound in air in the audio-frequency range. J Acoust Soc Am 35(1):11–17

    Article  ADS  Google Scholar 

  • Harris CM (1966) Absorption of sound in air versus humidity and temperature. J Acoust Soc Am 40(1):148–159

    Article  ADS  Google Scholar 

  • Ito Y (1998) Design and performance of an acoustic antenna for a phased array Doppler sodar. Meteorol Appl 5(2):149–156

    Article  Google Scholar 

  • Kallistratova MA (1963) Experimental investigation of sound wave scattering in the atmosphere. Foreign Technology Div Wright-patterson AFB OHIO

    Google Scholar 

  • Kallistratova MA, Petenko IV, Kouznetsov RD, Kulichkov SN, Chkhetiani OG, Chunchusov IP, Lyulyukin VS et al (2018) Sodar sounding of the atmospheric boundary layer: review of studies at the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Izv Atmos Oceanic Phys 54(3):242–256

    Article  ADS  Google Scholar 

  • Kumar N, Parmar KS, Soni K, Garg N, Agarwal R (2015) Prediction of ventilation coefficient, using a conjunction model of wavelet-Neuro-fuzzy Model: A Case Study Delhi, India. Academia J Sci Res 3:184–191

    Google Scholar 

  • Kumar N, Soni K, Garg N, Ravinder Agarwal D, Saha MS, Singh G (2017a) SODAR pattern classification and its dependence on meteorological parameters over a semiarid region of India. Int J Remote Sens 38(11):3466–3482

    Article  Google Scholar 

  • Kumar N, Soni K, Agarwal R, Singh M (2017b) SODAR as a diagnostics tool for urban air-quality and health care system. J Acoust Soc India 44(4):213–222

    Google Scholar 

  • Kumar N, Soni K, Agarwal R (2021a) Design and development of SODAR antenna structure. Mapan 36(4):785–793

    Article  Google Scholar 

  • Kumar N, Soni K, Agarwal R, Singh M (2021b) Studies different structure of atmospheric boundary layer using monostatic SODAR. In: Recent developments in acoustics. Springer, Singapore, pp 301–309

    Chapter  Google Scholar 

  • Kumar N, Soni K, Agarwal R (2021c) Prediction of temporal atmospheric boundary layer height using long short-term memory network. Tellus A Dyn Meteorol Oceanogr 73(1):1–14

    Google Scholar 

  • Kumar N, Soni K, Agarwal R (2021d) A comprehensive study of different feature selection methods and machine-learning techniques for SODAR structure classification. Model Earth Syst Environ 7(1):209–220

    Article  Google Scholar 

  • Little CG (1969) Acoustic methods for the remote probing of the lower atmosphere. Proc IEEE 57(4):571–578

    Article  Google Scholar 

  • Lo YT, Lee SW (2013) Antenna handbook: theory, applications, and design. Springer Science & Business Media

    Google Scholar 

  • Lokoshchenko MA (2002) Long-term sodar observations in Moscow and a new approach to potential mixing determination by radiosonde data. J Atmos Ocean Technol 19(8):1151–1162

    Article  Google Scholar 

  • Mahoney AR, McAllister LG, Pollard JR (1973) The remote sensing of wind velocity in the lower troposphere using an acoustic sounder. Bound-Layer Meteorol 4(1):155–167

    Article  ADS  Google Scholar 

  • Marshall JM, Peterson AM, Barnes AA (1972) Combined radar-acoustic sounding system. Appl Opt 11(1):108–112

    Article  ADS  Google Scholar 

  • McAllister LG (1968) Acoustic sounding of the lower troposphere. J Atmos Terr Phys 30(7):1439–1440

    Article  ADS  Google Scholar 

  • McAllister LG (1971) Wind velocity measurements in the lower atmosphere using acoustic sounding techniques. WRE

    Google Scholar 

  • McAllister LG, Pollard JR, Mahoney AR, Shaw PJR (1969) Acoustic sounding—a new approach to the study of atmospheric structure. Proc IEEE 57(4):579–587

    Article  Google Scholar 

  • Melas D (1993) Similarity methods to derive turbulence quantities and mixed-layer depth from sodar measurements in the convective boundary layer: a review. Appl Phys B 57(1):11–17

    Article  ADS  Google Scholar 

  • Monin AS (1962) Characteristics of the scattering of sound in a turbulent atmosphere. Sov Phys Acoust 7(4):370–373

    MathSciNet  Google Scholar 

  • Müller G, Möser M (eds) (2012) Handbook of engineering acoustics. Springer Science & Business Media

    Google Scholar 

  • Neff W, Helmig D, Grachev A, Davis D (2008) A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer. Atmos Environ 42(12):2762–2779

    Article  ADS  Google Scholar 

  • Parry HD, Sanders MJ (1972) The design and operation of an acoustic radar. IEEE Trans Geosci Electron 10(1):58–64

    Article  ADS  Google Scholar 

  • Richardson H, Basu S, Holtslag AAM (2013) Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number. Bound-Layer Meteorol 148(1):93–109

    Article  ADS  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648

    Article  ADS  Google Scholar 

  • Rossing TD (2014) Introduction to acoustics. In: Springer handbook of acoustics. Springer, New York, pp 1–7

    Google Scholar 

  • Saha D, Kirti Soni MN, Mohanan, and Mahavir Singh. (2019) Long-term trend of ventilation coefficient over Delhi and its potential impacts on air quality. Remote Sens Appl: Soc Environ 15:100234

    Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34(7):1001–1027

    Article  ADS  Google Scholar 

  • Sgouros G, Helmis CG, Degleris J (2011) Development and application of an algorithm for the estimation of mixing height with the use of a SODAR-RASS remote sensing system. Int J Remote Sens 32(22):7297–7313

    Article  Google Scholar 

  • Simmons WR, Wescott JW, Hall FF (1971) Acoustic echo sounding as related to air pollution in urban environments, vol 2. Environmental Research Laboratories

    Google Scholar 

  • Singal SP (ed) (2006) Acoustic remote sensing applications, vol 69. Springer

    Google Scholar 

  • Singal SP, Aggarwal SK (1979) Sodar & radiosonde studies of thermal structure of the lower atmosphere at Delhi. Indian J Radio Space Phys 8:76–81

    Google Scholar 

  • Singal SP, Gera BS, Saxena N (1997) Sodar: a tool to characterize hazardous situations in air pollution and communication. In: Acoustic remote sensing applications. Springer, Berlin, Heidelberg, pp 325–384

    Chapter  Google Scholar 

  • Stull RB (1988. eBook ISBN 978-94-009-3027-8) An introduction to boundary layer meteorology, vol 13. Springer Science & Business Media. https://doi.org/10.1007/978-94-009-3027-8

    Book  MATH  Google Scholar 

  • Sujatha P, Mahalakshmi DV, Ramiz A, Rao PVN, Naidu CV (2016) Ventilation coefficient and boundary layer height impact on urban air quality. Cogent Environ Sci 2(1):1125284

    Article  Google Scholar 

  • Tatarskii VI (1961) Wave propagation in turbulent medium. Courier Dover Publications

    Book  Google Scholar 

  • Thomas AR (1968) Sonic investigation of thermal inversion layers of the atmosphere. The University of Texas at Austin

    Google Scholar 

  • Vasilevskyi O (2014) Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. Int J Metrol Qual Eng 5:403

    Article  Google Scholar 

  • Wesely ML (1976) The combined effect of temperature and humidity fluctuations on refractive index. J Appl Meteorol 15(1):43–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirti Soni .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Soni, K., Nair, A.S., Kumar, N., Chourey, P., Singh, N.J., Agarwal, R. (2022). Development of Calibrated and Validated SODAR with Reference of Air Quality Management. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics