Skip to main content

Microscopy Using Liquid Lenses for Industrial and Biological Applications

Error analysis and uncertainty evaluation

  • Living reference work entry
  • First Online:
Handbook of Metrology and Applications

Abstract

Quantitative Microscopy refers to the surface metrology of microscopic structures. It deals with the interaction of light with material and quantifies the changes in terms of surface measurements. This chapter describes optical metrology techniques used in qualitative and quantitative microscopy and explains the different extended depth of focus techniques used in quantitative microscopy. The prime focus is on the usage of liquid lenses as a potential solution for extended depth of focus imaging in quantitative microscopy. This chapter summarizes a number of applications of liquid lenses in microscopy dealing with the scope in industry and biological sciences. In the last section, the concept of uncertainty of measurement along with the uncertainty budget has been explained taking into consideration the relevant factors responsible for uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Allahabadi GN (2016) Bessel light sheet structured illumination microscopy. Doctoral dissertation, The University of Arizona

    Google Scholar 

  • Anand A, Faridian A, Chhaniwal VK, Mahajan S, Trivedi V, Dubey SK, Pedrini G, Osten W, Javidi B (2014) Single beam Fourier transform digital holographic quantitative phase microscopy. Appl Phys Lett 103705:1–6

    Google Scholar 

  • Attota RK (2018) Through-focus or volumetric type of optical imaging methods: a review. J Biomed Opt 23:1

    Article  Google Scholar 

  • Barak N, Kumari V, Sheoran G (2018) Dual wavelength lensless fourier transform digital holographic microscopy for quantitative phase imaging. In: 15th IEEE India Council International Conference (INDICON). IEEE, pp 1–4

    Google Scholar 

  • Barak N, Kumari V, Sheoran G (2020) Automated extended depth of focus digital holographic microscopy using electrically tunable lens. J Opt 22(12):125602

    Article  ADS  Google Scholar 

  • Barak N, Kumari V, Sheoran G (2021a) Simulation and analysis of variable numerical aperture wide-field microscopy for telecentricity with constant resolution. Micron 145:103064

    Article  Google Scholar 

  • Barak N, Kumari V, Sheoran G (2021b) Design and development of an automated dual-mode microscopic system using electrically tunable lenses. Microsc Microanal 28(1):173–184

    Article  ADS  Google Scholar 

  • Barty A, Nugent KA, Paganin D, Roberts A (1998) Quantitative optical phase microscopy. Opt Lett 23:817

    Article  ADS  Google Scholar 

  • Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: An application of electrowetting. Eur Phys J E 163:159–163

    Article  Google Scholar 

  • Colomb T, Pavillon N, Kühn J, Cuche E, Depeursinge C, Emery Y (2010) Extended depth-of-focus by digital holographic microscopy. Opt Lett 35:1840

    Article  ADS  Google Scholar 

  • Croft WJ (2011) Under the Ni croscope, vol 5. World Scientific

    Google Scholar 

  • Dasgupta R, Ahlawat S, Gupta PK, Xavier J, Joseph J (2012) Optical trapping with low numerical aperture objective lens. In: Photonics global conference (PGC). IEEE, pp 1–4

    Google Scholar 

  • Deng D, Wu Y, Liu X, He W, Peng X, Peng J, Qu W (2017) Simple and flexible phase compensation for digital holographic microscopy with electrically tunable lens. Appl Opt 56:6007–6014

    Article  ADS  Google Scholar 

  • Dowski ER, Cathey WT (1995) Extended depth of field through wave-front coding. Appl Opt 34:1859–1866

    Article  ADS  Google Scholar 

  • Fahrbach FO, Voigt FF, Schmid B, Helmchen F, Huisken J (2013) Rapid 3D light-sheet microscopy with a tunable lens. Opt Express 21:21010

    Article  ADS  Google Scholar 

  • Ferraro P, Alferi D, De Nicola S, De Petrocellis L, Finizio A, Pierattini G (2006) Quantitative phase-contrast microscopy by a lateral shear approach to digital. Opt Lett 31:1405–1407

    Article  ADS  Google Scholar 

  • Gabor D (1948) A new microscopic principle. Nature 161:777–778

    Article  ADS  Google Scholar 

  • Gao P, Pedrini G, Osten W (2013) Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Opt Lett 38:1328–1330

    Article  ADS  Google Scholar 

  • Grewe BF, Voigt FF, van’t Hoff M, Helmchen F (2011) Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed Opt Express 2:2035

    Article  Google Scholar 

  • Grubb DT (2012) Optical microscopy. Polym Sci 2:465–478

    Google Scholar 

  • GUM-2008 (2008) Evaluation of measurement data — Guide to the expression of uncertainty in measurement. Int Organ Stand Geneva ISBN 50:134

    Google Scholar 

  • Haslehurst P, Yang Z, Dholakia K, Emptage N (2018) Fast volume-scanning light sheet microscopy reveals transient neuronal events. Biomed Opt Express 9:2154

    Article  Google Scholar 

  • Hedde PN, Gratton E (2018) Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens. Microsc Res Tech 81:924–928

    Article  Google Scholar 

  • Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12:255–259

    Article  Google Scholar 

  • Ho J, Hyung J, Jeong D, Ji E, Park C (2017) Tip/tilt compensated through-focus scanning optical microscopy. In: Optical metrology and inspection for industrial applications IV, vol 10023. SPIE, pp 118–123

    Google Scholar 

  • Jabbour JM, Malik BH, Olsovsky C, Cuenca R, Cheng S, Jo JA, Cheng Y-SL, Wright JM, Maitland KC (2014) Optical axial scanning in confocal microscopy using an electrically tunable lens. Biomed Opt Express 5:645

    Article  Google Scholar 

  • Jeong H, Yoo H, Gweon D (2016) High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens. Opt Express 24:3806

    Article  ADS  Google Scholar 

  • Jiang J, Zhang D, Walker S, Gu C, Ke Y, Yung WH, Chen S (2015) Fast 3-D temporal focusing microscopy using an electrically tunable lens. Opt Express 23:24362

    Article  ADS  Google Scholar 

  • Joint Committee for Guides in Metrology (JCGM/WG 2) (2006) International Vocabulary of Metrology – Basic and General Concepts and Associated Terms (VIM). In: VIM3 Int. Vocab. Metrol., 3rd edn, pp 1–127

    Google Scholar 

  • Kim T (2006) Optical sectioning by optical scanning holography and a Wiener filter. Appl Opt 45:872–879

    Article  ADS  Google Scholar 

  • Kim MK (2011) Digital holographic microscopy: principles, techniques, and applications. Springer Series in Optical Sciences

    Book  Google Scholar 

  • Kim JW, Lee BH (2019) Autofocus tracking system based on digital holographic microscopy and electrically tunable lens. Curr Opt Photonics 3:27–32

    Google Scholar 

  • Koyama D, Isago R, Nakamura K (2011) Compact, high-speed variable-focus liquid lens using acoustic radiation force Daisuke. Opt Express 18:786–789

    Google Scholar 

  • Latychevskaia T, Gehri F (2010) Depth-resolved holographic reconstructions by three-dimensional deconvolution. Opt Express 18:739–745

    Article  Google Scholar 

  • Lee K-S, Vanderwall P, Rolland JP (2010) Two-photon microscopy with dynamic focusing objective using a liquid lens. In: Multiphoton microscopy in the biomedical sciences X, vol 7569. SPIE, pp 272–278

    Chapter  Google Scholar 

  • Lee DJ, Han K, Lee HJ, Weiner AM (2015) Synthetic aperture microscopy based on reference less phase retrieval with an electrically tunable lens. Appl Opt 54:5346

    Article  ADS  Google Scholar 

  • Li B, Qin H, Yang S, Xing D (2014) In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens. Opt Express 22:20130

    Article  ADS  Google Scholar 

  • Liu S, Hua H (2011) Extended depth-of-field microscopic imaging with a variable focus microscope objective. Opt Express 19:353

    Article  ADS  Google Scholar 

  • Mccormick NJ (2007) Confocal scanning optical microscop, vol 42. Wiley-VCH, Weinheim, pp 57–76

    Google Scholar 

  • Mccrone WC (1974) Detection and identification of asbestos by microscopical dispersion staining. Environ Health Perspect 9:57–61

    Article  Google Scholar 

  • P. Michael Conn, Methods in enzymology (2004)

    Google Scholar 

  • Mir M, Bhaduri B, Wang R, Zhu R, Popescu G (2012) Quantitative phase imaging, vol 57. Elsevier Inc.

    Google Scholar 

  • Note, Optotune Application (2013) Optical focusing in microscopy with Optotune’s focus tunable lens EL-10-30, 1–14

    Google Scholar 

  • Oku H, Hashimoto K, Ishikawa M (2004) Variable-focus lens with 1-kHz. Opt Soc Am 12:2138–2149

    Google Scholar 

  • Ong YH, Zhu C, Liu Q (2013) Numerical and experimental investigation of lens based configurations for depth sensitive optical measurements. In: European conference on biomedical optics. Optica Publishing Group, p 87980P

    Google Scholar 

  • Optotune, Electrically tunable large aperture lens EL-16-40-TC-VIS-20D, http://www.optotune.com/

  • Orth A, Crozier K (2012) Microscopy with microlens arrays: high throughput, high resolution and light-field imaging. Opt Express 20:13522

    Article  ADS  Google Scholar 

  • Osten W, Reingand N (2012) Handbook of optical systems advances in speckle metrology and related techniques ultra-fast material metrology. Germany: Wiley VCH

    Google Scholar 

  • Pan W (2013) Multiplane imaging and depth-of-focus extending in digital holography by a single-shot digital hologram. Opt Commun 286:117–122

    Article  ADS  Google Scholar 

  • Pandiyan VP, Khare K, John R (2021) Quantitative phase imaging of live cells with near on-axis digital holographic microscopy using constrained optimization approach. J Biomed Opt 21:106003

    Google Scholar 

  • Rijal N Dark-field microscopy: principle and uses, https://microbeonline.com/dark-field-microscopy/

  • Rodrigo JA, Alieva T (2014) Rapid quantitative phase imaging for partially coherent light microscopy. Opt Express 22:13472

    Article  ADS  Google Scholar 

  • Salter PS, Iqbal Z, Booth MJ (2013) Analysis of the three-dimensional focal positioning capability of adaptive optic elements. Int J Optomechatronics 7:37–41

    Article  Google Scholar 

  • Samsheerali PT, Khare K, Joseph J (2014) Quantitative phase imaging with single shot digital holography. Opt Commun 319:85–89

    Article  ADS  Google Scholar 

  • Sanchez C, Cristóbal G, Bueno G, Blanco S, Borrego-ramos M, Olenici A, Pedraza A, Ruiz-santaquiteria J (2018) Oblique illumination in microscopy: a quantitative evaluation. Micron 105:47–54

    Article  Google Scholar 

  • Sanz M, Trusiak M, García J, Micó V (2020) Variable zoom digital in-line holographic microscopy. Opt Lasers Eng 127:105939

    Article  Google Scholar 

  • Schubert R, Vollmer A, Ketelhut S, Kemper B (2014) Enhanced quantitative phase imaging in self-interference digital holographic microscopy using an electrically focus tunable lens. Biomed Opt Express 5:4213

    Article  Google Scholar 

  • Shotton DM (1989) Confocal scanning optical microscopy and its applications for biological specimens. J Cell Sci 94:175–206

    Article  Google Scholar 

  • Singh RK, Sharma AM, Das B (2014) Quantitative phase-contrast imaging through a scattering media. Opt Lett 39:5054–5057

    Article  ADS  Google Scholar 

  • Sluder G, Wolf DE (2007) Methods in cell biology. In: Digital microscopy, vol 81. Academic Press

    Google Scholar 

  • Tahmasbi A, Ram S, Chao J, Anish V, Tang FW, Ward ES, Ober RJ (2014) Designing the focal plane spacing for multifocal plane microscopy. Opt Express 22:1040–1041

    Article  Google Scholar 

  • Takahashi S, Fujimoto T, Kato K (1997) High resolution photon scanning tunneling microscope. Nanotechnology 8:A54–A57

    Article  ADS  Google Scholar 

  • Tsai PS, Migliori B, Campbell K, Kim TN, Kam Z, Groisman A, Kleinfeld D (2007) Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane. Appl Phys Lett 91:3–6

    Article  Google Scholar 

  • Valdecasas AG, Marshall D, Becerra JM, Terrero JJ (2001) On the extended depth of focus algorithms for bright field microscopy. Micron 32:559–569

    Article  Google Scholar 

  • Verschueren H (1985) Interference reflection microscopy in cell biology: methodology and applications. J Cell Sci 301:279–301

    Article  Google Scholar 

  • Wang Z, Qu W, Yang F, Tian A, Asundi A (2017) Absolute measurement of aspheric lens with electrically tunable lens in digital holography. Opt Lasers Eng 88:313–318

    Article  Google Scholar 

  • Wei B, Feng X, Wang K, Gao B (2021) The multi-focus-image-fusion method based on convolutional neural network and sparse representation. Entropy 23(7):827

    Article  ADS  MathSciNet  Google Scholar 

  • Xavier J, Dasgupta R, Ahlawat S, Joseph J, Gupta PK, Xavier J, Dasgupta R, Ahlawat S, Joseph J (2012) Three dimensional optical twisters-driven helically stacked multi-layered microrotors Three dimensional optical twisters-driven helically stacked multi-layered microrotors. Appl Phys Lett 100(12):121101

    Article  ADS  Google Scholar 

  • Yamamoto K, Fujimoto T (2014) Primary particle size distribution measurement of nanomaterials by using TEM. Microsc Microanal 20:1946–1947

    Article  ADS  Google Scholar 

  • Zalevsky Z (2010) Extended depth of focus imaging: a review. SPIE Rev 1:0180001

    Google Scholar 

  • Zhai M, Huang X, Mao H, Zhu Q, Wang S (2019) Using electrically tunable lens to improve axial resolution and imaging field in light sheet fluorescence microscope. In: International conference on sensing and imaging, vol 506. Springer, Cham, pp 411–419

    Chapter  Google Scholar 

  • Zhu C, Ong YH, Liu Q (2014) Multifocal noncontact color imaging for depth-sensitive fluorescence measurements of epithelial cancer. Opt Lett 39:3250

    Article  ADS  Google Scholar 

  • Zuo C (2015) Computational phase imaging for light microscopes, SPIE Newsroom: 8–11

    Google Scholar 

  • Zuo C, Chen Q, Qu W, Asundi A (2013) High-speed transport-of-intensity phase microscopy with an electrically tunable lens. Opt Express 21:24060

    Article  ADS  Google Scholar 

Download references

Acknowledgment

Vineeta Kumari and Gyanendra Sheoran gratefully acknowledge the support of Department of Science and Technology (DST) under grant number DST/TDT/SHRI-07/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanendra Sheoran .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Barak, N., Kumari, V., Sheoran, G. (2022). Microscopy Using Liquid Lenses for Industrial and Biological Applications. In: Aswal, D.K., Yadav, S., Takatsuji, T., Rachakonda, P., Kumar, H. (eds) Handbook of Metrology and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-1550-5_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1550-5_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1550-5

  • Online ISBN: 978-981-19-1550-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics