Skip to main content

Automatic Lung Carcinoma Identification and Classification in CT Images Using CNN Deep Learning Model

  • Chapter
  • First Online:
Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis

Abstract

Lung cancer is the most prevalent malignancy that cannot be avoided and that causes late health care death. At now, CT scans can be used to assist physicians to diagnose early stage lung cancer. In many situations, lung cancer detection depends on doctors’ experience, which might neglect some patients and create certain issues. Deep learning in several diagnostic fields of medical imaging has become a popular and powerful approach. The deep study models employ the Convolutional Neural Network (CNN), which extracts features and classifies the picture using a fully connected network. The CNN leverages this functionality. The chapter presented study of deep learning algorithm for lung cancer detection. The experiment is performed with CNN by utilizing LIDC-IDRI dataset. It is referred to as the Lung Image Database Consortium image collection and comprises of diagnosis thoracic computed tomography (CT) scans which are labeled. It is accessible worldwide and is updated on a regular basis. The classification performance is measured for the matrices F1 score, Recall, precision, support, and accuracy. The accuracy achieved with experiment is 96.5%

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, I., Wani, W. A., & Saleem, K. (2011). Cancer scenario in India with future perspectives. Cancer Therapy, 8.

    Google Scholar 

  2. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: A Cancer Journal for Clinicians, 66(1), 7–30.

    Google Scholar 

  3. Mishra, S., Chaudhury, P., Mishra, B. K., & Tripathy, H. K. (2016, March). An implementation of feature ranking using machine learning techniques for diabetes disease prediction. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies (pp. 1–3).

    Google Scholar 

  4. Fass, L. (2008). Imaging and cancer: A review. Molecular Oncology, 2(2), 115–152.

    Article  Google Scholar 

  5. Barentsz, J., Takahashi, S., Oyen, W., Mus, R., De Mulder, P., Reznek, R., Oudkerk, M., & Mali, W. (2006). Commonly used imaging techniques for diagnosis and staging. Journal of Clinical Oncology, 24(20), 3234–3244.

    Google Scholar 

  6. Chaudhury, P., Mishra, S., Tripathy, H. K., & Kishore, B. (2016, March). Enhancing the capabilities of student result prediction system. In Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies (pp. 1–6).

    Google Scholar 

  7. Khan, M. A., Akram, T., Sharif, M., Shahzad, A., Aurangzeb, K., Alhussein, M., & Altamrah, A. (2018). An implementation of normal distribution based segmentation and entropy controlled features selection for skin lesion detection and classification. BMC Cancer, 18(1), 638.

    Article  Google Scholar 

  8. Nasir, M., Attique Khan, M., Sharif, M., Lali, I. U., Saba, T., & Iqbal, T. (2018). An improved strategy for skin lesion detection and classification using uniform segmentation and feature selection based approach. Microscopy Research and Technique, 81(6), 528–543.

    Article  Google Scholar 

  9. Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun, S., & Dean, J. (2019). A guide to deep learning in healthcare. Nature Medicine, 25(1), 24–29.

    Google Scholar 

  10. Hawkins, S. H., Korecki, J. N., Balagurunathan, Y., Gu, Y., Kumar, V., Basu, S., Hall, L. O., Goldgof, D. B., Gatenby, R. A., & Gillies, R. J. (2014). Predicting outcomes of nonsmall cell lung cancer using CT image features. IEEE Access, 2, 1418–1426.

    Article  Google Scholar 

  11. Tripathy, H. K., Mishra, S., Thakkar, H. K., & Rai, D. (2021). CARE: A collision-aware mobile robot navigation in grid environment using improved breadth first search. Computers & Electrical Engineering, 94, 107327

    Google Scholar 

  12. Balagurunathan, Y., Gu, Y., Wang, H., Kumar, V., Grove, O., Hawkins, S., Kim, J., Goldgof, D. B., Hall, L. O., Gatenby, R. A., & Gillies, R. J. (2014). Reproducibility and prognosis of quantitative features extracted from CT images. Translational Oncology, 7(1), 72.

    Article  Google Scholar 

  13. Jena, L., Patra, B., Nayak, S., Mishra, S., & Tripathy, S. (2021). Risk prediction of kidney disease using machine learning strategies. In Intelligent and Cloud Computing (pp. 485–494). Springer Singapore.

    Google Scholar 

  14. Mishra, S., Raj, A., Kayal, A., Choudhary, V., Verma, P., & Biswal, L. (2012). Study of cluster based routing protocols in wireless sensor networks. International Journal of Scientific Engineering and Research, 3(7).

    Google Scholar 

  15. Afza, F., Khan, M. A., Sharif, M., & Rehman, A. (2019). Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microscopy Research and Technique, 82(9), 1471–1488.

    Article  Google Scholar 

  16. Khan, M. A., Javed, M. Y., Sharif, M., Saba, T., & Rehman, A. (2019, April). Multi-model deep neural network based features extraction and optimal selection approach for skin lesion classification. In 2019 International Conference on Computer and Information Sciences (ICCIS) (pp. 1–7). IEEE.

    Google Scholar 

  17. Mishra, S., Mishra, B. K., Tripathy, H. K., & Dutta, A. (2020). Analysis of the role and scope of big data analytics with IoT in health care domain. In Handbook of data science approaches for biomedical engineering (pp. 1–23). Academic Press.

    Google Scholar 

  18. Sreelatha, T., Subramanyam, M. V., & Prasad, M. G. (2019). Early detection of skin cancer using melanoma segmentation technique. Journal of Medical Systems, 43(7), 190.

    Article  Google Scholar 

  19. Rehman, A., Khan, M. A., Mehmood, Z., Saba, T., Sardaraz, M., & Rashid, M. (2020). Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction. Microscopy Research and Technique, 83(4), 410–423.

    Article  Google Scholar 

  20. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  21. Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint arXiv:1505.00853

  22. Armato Samuel, G., III, McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., et al. (2015). Data from LIDC-IDRI. Available online: https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI. Accessed January 7, 2020.

  23. Kumar, P. R., & Manash, E. B. K. (2019). Deep learning: A branch of machine learning. Journal of Physics: Conference Series, 1228(1). IOP Publishing.

    Google Scholar 

  24. Coccia, M. (2019). Artificial intelligence technology in oncology: A new technological paradigm. National Research Council of Italy & Yale University.

    Google Scholar 

  25. Mishra, S., Dash, A., & Jena, L. (2021). Use of deep learning for disease detection and diagnosis. In Bio-inspired neurocomputing (pp. 181–201). Springer Singapore.

    Google Scholar 

  26. Tandon, R., & Agrawal, S. (2020). Sequential CNN for automatic breast cancer detection using histopathological images. Journal of Critical Reviews JCR, 7(15), 6104–6117.

    Google Scholar 

  27. Ray, C., Tripathy, H. K., & Mishra, S. (2019, June). Assessment of autistic disorder using machine learning approach. In International Conference on Intelligent Computing and Communication (pp. 209–219). Springer Singapore.

    Google Scholar 

  28. Saravagi, D., Agrawal, S., & Saravagi, M. (2021). Opportunities and challenges of ML model for prediction and diagnosis of spondylolisthesis: A systematic review International Journal of Engineering Systems Modelling and Simulation, 12(2/3), 127–138.

    Google Scholar 

  29. Saravagi, D., Agrawal, S., & Saravagi, M. (2021). Indian stock market analysis and prediction using the LSTM model during COVID-19. International Journal of Engineering Systems Modelling and Simulation, 12(2/3), 139–147.

    Article  Google Scholar 

  30. Agrawal, S., & Kamal, R. (2015). Computational orchestrator: A super class for matrix, robotics and control system orchestration. International Journal of Computer Applications, 12–17. ISSN 0975-8887.

    Google Scholar 

  31. Agrawal, S., & Jain, S. (2020). Medical text and image processing: Applications, issues and challenges. Springer Nature. https://doi.org/10.1007/978-3-030-40850-3_11

  32. Ganapathy, N., Swaminathan, R., & Deserno, T. M. (2018). Deep learning on 1-D biosignals: A taxonomy-based survey. Yearbook of Medical Informatics, 27(01), 098–109.

    Article  Google Scholar 

  33. Xu, Y., Hosny, A., Zeleznik, R., Parmar, C., Coroller, T., Franco, I., Mak, R. H., & Aerts, H. J. W. L. (2019). Deep learning predicts lung cancer treatment response from serial medical imaging. Clinical Cancer Research, 25(11), 3266–3275.

    Google Scholar 

  34. Sankar, V., Kumar, D., Clausi, D. A., Taylor, G. W., & Wong, A. (2019). Sisc: End-to-end interpretable discovery radiomics-driven lung cancer prediction via stacked interpretable sequencing cells. arXiv preprint arXiv:1901.04641

  35. Raghu, M., Zhang, C., Kleinberg, J., & Bengio, S. (2019). Transfusion: Understanding transfer learning for medical imaging. arXiv preprint arXiv:1902.07208

  36. Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), 1–48.

    Article  Google Scholar 

  37. Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806

  38. Raihan-Al-Masud, Md., & Mondal, M. R. H. (2020). Data-driven diagnosis of spinal abnormalities using feature selection and machine learning algorithms. PLoS ONE, 15(2), e0228422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritu Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tandon, R., Agrawal, S., Raghuwanshi, R., Rathore, N.P.S., Prasad, L., Jain, V. (2022). Automatic Lung Carcinoma Identification and Classification in CT Images Using CNN Deep Learning Model. In: Mishra, S., Tripathy, H.K., Mallick, P., Shaalan, K. (eds) Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis. Studies in Computational Intelligence, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-19-1076-0_9

Download citation

Publish with us

Policies and ethics