Skip to main content

Effective Deep Learning Algorithms for Personalized Healthcare Services

  • Chapter
  • First Online:
Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1024))

Abstract

The main motive to present this chapter is to provide effective deep learning algorithms for personalized healthcare services and to make the reader understand the importance of deep learning in the field of healthcare. We realize that acquiring ability and significant viewpoints from nuanced, high-dimensional, and heterogeneous biomedical information keeps on being a significant test in medical care change. Electronic wellbeing reports, imaging, omics, sensor information, and text are instances of nuanced, heterogeneous, gravely explained, and generally unstructured information that have arisen in contemporary biomedical science. As feature engineering is needed in traditional data mining approach to extract efficient and more scalable features from data, and after that predicting and clustering the models make it more challenging in these steps, especially in case of complicated data, the latest advancements in deep learning in the field of healthcare give effective calculations to get start to finish models from complex information. In the coming days, it is believed that deep learning will have a major role in converting big and complex biomedical data into improved human health. However, we also notice limitations and the need for improved method creation and implementations, especially in terms of domain experts’ and citizen scientists’ comprehension. To close the gap between deep learning models and human interpretability, we propose designing holistic and practical interpretable algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Muller, H., & Unay, D. (2017). Retrieval from and understanding of large-scale multi-modal medical datasets: A review. IEEE Transactions on Multimedia, 19(9), 2093–2104.

    Article  Google Scholar 

  2. Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2017). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21.

    Article  Google Scholar 

  3. Alam, M., Vidyaratne, L. S., & Iftekharuddin, K. M. (2018). Sparse simultaneous recurrent deep learning for robust facial expression recognition. IEEE Transactions on Neural Networks and Learning Systems, 29(10), 4905–4916.

    Article  Google Scholar 

  4. Mishra, S., Panda, A., & Tripathy, K. H. (2018). Implementation of re-sampling technique to handle skewed data in tumor prediction. Journal of Advanced Research in Dynamical and Control Systems, 10, 526–530.

    Google Scholar 

  5. Tobore, I., Li, J., Yuhang, L., Al-Handarish, Y., Kandwal, A., Nie, Z., & Wang, L. (2019). Deep learning intervention for health care challenges: Some biomedical domain considerations. JMIR mHealth and uHealth, 7(8), e11966.

    Google Scholar 

  6. Sahoo, S., Das, M., Mishra, S., & Suman, S. (2021). A hybrid DTNB model for heart disorders prediction. In Advances in electronics, communication and computing (pp. 155–163). Springer.

    Google Scholar 

  7. Yousoff, S. N. M., Baharin, A., & Abdullah, A. (2016). A review on optimization algorithm for deep learning method in bioinformatics field. In 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES).

    Google Scholar 

  8. Jena, L., Mishra, S., Nayak, S., Ranjan, P., & Mishra, M. K. (2021). Variable optimization in cervical cancer data using particle swarm optimization. In Advances in electronics, communication and computing (pp. 147–153). Springer.

    Google Scholar 

  9. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning—ICML’08.

    Google Scholar 

  10. Roy, S. N., Mishra, S., & Yusof, S. M. (2021). Emergence of drug discovery in machine learning. In Technical advancements of machine learning in healthcare (Vol. 936, p. 119).

    Google Scholar 

  11. Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. In Lecture notes in computer science (Vol. 52, pp. 52–59). Springer Berlin Heidelberg.

    Google Scholar 

  12. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Van Esesn, B. C., Awwal, A. A. S., & Asari, V. K. (2018). The history began from AlexNet: A comprehensive survey on deep learning approaches. arXiv [cs.CV].

    Google Scholar 

  13. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157–166.

    Article  Google Scholar 

  14. Matsugu, M., Mori, K., Mitari, Y., & Kaneda, Y. (2003). Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks, 16(5–6), 555–559.

    Article  Google Scholar 

  15. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology, 160(1), 106–154.

    Article  Google Scholar 

  16. Tripathy, H. K., Mishra, S., Thakkar, H. K., & Rai, D. (2021). CARE: A collision-aware mobile robot navigation in grid environment using improved breadth first search. Computers & Electrical Engineering, 94, 107327.

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

    Article  Google Scholar 

  18. Salakhutdinov, R., & Brain, H. L. (2010). Efficient learning of deep Boltzmann machines. Mlr.press. [Online]. Available: http://proceedings.mlr.press/v9/salakhutdinov10a/salakhutdinov10a.pdf. Accessed June 28, 2021.

  19. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  MathSciNet  Google Scholar 

  20. Kim, J. Y., Lee, H. E., Choi, Y. H., Lee, S. J., & Jeon, J. S. (2019). CNN-based diagnosis models for canine ulcerative keratitis. Science and Reports, 9(1), 14209.

    Article  Google Scholar 

  21. Ryu, S., Noh, J., & Kim, H. (2016). Deep neural network based demand side short term load forecasting. Energies, 10(1), 3.

    Article  Google Scholar 

  22. Tripathy, H. K., Mallick, P. K., & Mishra, S. (2021). Application and evaluation of classification model to detect autistic spectrum disorders in children. International Journal of Computer Applications in Technology, 65(4), 368–377.

    Article  Google Scholar 

  23. Mishra, S., Mohapatra, S. K., Mishra, B. K., & Sahoo, S. (2018). Analysis of mobile cloud computing: Architecture, applications, challenges, and future perspectives. In Applications of security, mobile, analytic, and cloud (SMAC) technologies for effective information processing and management (pp. 81–104). IGI Global.

    Google Scholar 

  24. Xu, M., Papageorgiou, D. P., Abidi, S. Z., Dao, M., Zhao, H., & Karniadakis, G. E. (2017). A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Computational Biology, 13(10), e1005746.

    Google Scholar 

  25. Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). $\mathtt Deepr$: A convolutional net for medical records. IEEE Journal of Biomedical and Health Informatics, 21(1), 22–30.

    Article  Google Scholar 

  26. Lin, C., Hsu, C. J., Lou, Y. S., Yeh, S. J., Lee, C. C., Su, S. L., & Chen, H. C. (2017). Artificial intelligence learning semantics via external resources for classifying diagnosis codes in discharge notes. Journal of Medical Internet Research, 19(11), e380.

    Google Scholar 

  27. Wang, S.-H., Lv, Y.-D., Sui, Y., Liu, S., Wang, S.-J., & Zhang, Y.-D. (2017). Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. Journal of Medical Systems, 42(1), 2.

    Article  Google Scholar 

  28. Zhang, J., & Wu, Y. (2017). A new method for automatic sleep stage classification. IEEE Transactions on Biomedical Circuits and Systems, 11(5), 1097–1110.

    Article  Google Scholar 

  29. Dominguez Veiga, J. J., O’Reilly, M., Whelan, D., Caulfield, B., & Ward, T. E. (2017). Feature-free activity classification of inertial sensor data with machine vision techniques: Method, development, and evaluation. JMIR mHealth and uHealth, 5(8), e115.

    Google Scholar 

  30. Sacha, D., Sedlmair, M., Zhang, L., Lee, J. A., Weiskopf, D., North, S., & Keim, D. (2016). Human-centered machine learning through interactive visualization. In ESANN 2016: 24th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Proceedings (pp. 641–646), Bruges, April 27–29, 2016.

    Google Scholar 

  31. Yang, X., Zhang, T., & Xu, C. (2015). Cross-domain feature learning in multimedia. IEEE Transactions on Multimedia, 17(1), 64–78.

    Article  Google Scholar 

  32. Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1).

    Google Scholar 

  33. Chattopadhyay, A., Mishra, S., & González-Briones, A. (2021). Integration of machine learning and IoT in healthcare domain. In Hybrid artificial intelligence and IoT in healthcare (pp. 223–244). Springer.

    Google Scholar 

  34. Lindsey, M. L., Kassiri, Z., Virag, J. A. I., de Castro Brás, L. E., & Scherrer-Crosbie, M. (2018). Guidelines for measuring cardiac physiology in mice. American Journal of Physiology-Heart and Circulatory Physiology, 314(4), H733–H752.

    Google Scholar 

  35. Raina, R., Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th Annual International Conference on Machine Learning—ICML’09.

    Google Scholar 

  36. Page, A., Turner, J. T., Mohsenin, T., & Oates, T. (2014). Comparing raw data and feature extraction for seizure detection with deep learning methods. Umbc.edu. [Online]. Available: http://eehpc.csee.umbc.edu/publications/pdf/2014/Adam_FLAIRS14.pdf. Accessed June 28, 2021.

  37. Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: State of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10–16.

    Article  Google Scholar 

  38. Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., Yunsheng, M., Chen, S., & Hou, P. (2018). A new deep learning-based food recognition system for dietary assessment on an edge computing service infrastructure. IEEE Transactions on Services Computing, 11(2), 249–261.

    Article  Google Scholar 

  39. Mukherjee, D., Tripathy, H. K., & Mishra, S. (2021). Scope of medical bots in clinical domain. In Technical advancements of machine learning in healthcare (Vol. 936, p. 339).

    Google Scholar 

  40. Brady, C. J., Mudie, L. I., Wang, X., Guallar, E., & Friedman, D. S. (2017). Improving consensus scoring of crowdsourced data using the Rasch model: Development and refinement of a diagnostic instrument. Journal of Medical Internet Research, 19(6), e222.

    Google Scholar 

  41. Bayen, E., Jacquemot, J., Netscher, G., Agrawal, P., Tabb Noyce, L., & Bayen, A. (2017). Reduction in fall rate in dementia managed care through video incident review: Pilot study. Journal of Medical Internet Research, 19(10), e339.

    Google Scholar 

  42. Doerr, M., Maguire Truong, A., Bot, B. M., Wilbanks, J., Suver, C., & Mangravite, L. M. (2017). Formative evaluation of participant experience with mobile eConsent in the app-mediated Parkinson mPower study: A mixed methods study. JMIR mHealth and uHealth, 5(2), e14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A., Mohapatra, S.S., Bisoy, S.K. (2022). Effective Deep Learning Algorithms for Personalized Healthcare Services. In: Mishra, S., Tripathy, H.K., Mallick, P., Shaalan, K. (eds) Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis. Studies in Computational Intelligence, vol 1024. Springer, Singapore. https://doi.org/10.1007/978-981-19-1076-0_8

Download citation

Publish with us

Policies and ethics