Skip to main content

Biopolymer-Based Gels

  • Reference work entry
  • First Online:
Handbook of Biopolymers

Abstract

A range of applications benefit from the properties of biopolymers, which are organic materials produced by living cells. These properties include biocompatibility, greater stiffness, toughness, flexibility, electrical conductivity, and biodegradability. The applications include edible films, transport materials, biomedicine, packaging materials for the food industry, emulsions, medication medical implants such wound healing, artificial organs, tissue engineering, and dressing. In this review, commonly known biopolymer-based gels, mechanism of its gelation, applications, and its advantages and disadvantages are briefly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. Akbari, E. Kashani, S.M.B. Fazljou, et al., Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J. Biol. Eng. 14(1) (2020). https://doi.org/10.1186/s13036-020-0227-7

  • S. Abirami, D. Nagarajan, A.V. Samrot, A.M. Varsini, A. Sugasini, D.A. Anand, Extraction, characterization, and utilization of shrimp waste chitin derived chitosan in antimicrobial activity, seed germination, preservative, and microparticle formulation. Biointerface Res. Appl. Chem. 11(2), 8725–8739 (2021)

    CAS  Google Scholar 

  • E.I. Akpan, X. Shen, B. Wetzel, K. Friedrich, Design and synthesis of polymer nanocomposites, in Polymer Composites with Functionalized Nanoparticles, (Elsevier, 2019), pp. 47–83

    Google Scholar 

  • S.Z. Al Sheheri, Z.M. Al-Amshany, Q.A. Al Sulami, N.Y. Tashkandi, M.A. Hussein, R.M. El-Shishtawy, The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des. Monomers Polym. (2019)

    Google Scholar 

  • S. Alberti, A. Gladfelter, T. Mittag, Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176(3), 419–434 (2019)

    CAS  Google Scholar 

  • B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th edn. (Garland Science, New York, 2002)

    Google Scholar 

  • F. Alihosseini, Plant-based compounds for antimicrobial textiles. Antimicrob. Text., 155–195 (2016). https://doi.org/10.1016/b978-0-08-100576-7.00010-9

  • J. Alipal, N.M. Pu’ad, T.C. Lee, N.H. Nayan, N. Sahari, H. Basri, M.L. Idris, H.Z. Abdullah, A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater Today: Proc 42, 240–250 (2021)

    Google Scholar 

  • A. Ammala, Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int. J. Cosmet. Sci. 35(2), 113–124 (2013)

    CAS  Google Scholar 

  • S. Araby, B. Philips, Q. Meng, J. Ma, T. Laoui, C.H. Wang, Recent advances in carbon-based nanomaterials for flame retardant polymers and composites. Compos. Part B 212, 108675 (2021)

    CAS  Google Scholar 

  • M.I. Avila Rodríguez, L.G. Rodríguez Barroso, M.L. Sánchez, Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 17(1), 20–26 (2017). https://doi.org/10.1111/jocd.12450

    Article  Google Scholar 

  • A.B. Bello, D. Kim, D. Kim, H. Park, S.H. Lee, Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng Part B Rev 26(2), 164–180 (2020)

    Google Scholar 

  • I.A. Brownlee, C.J. Seal, M. Wilcox, P.W. Dettmar, J.P. Pearson, Applications of alginates in food. In: Rehm, B.H.A., editor. Alginates: Biology and applications. Springer, London, pp 211–228 (2009)

    Google Scholar 

  • H.M. Buchhammer, M. Mende, M. Oelmann, Formation of mono-sized polyelectrolyte complex dispersions: Effects of polymer structure, concentration and mixing conditions. Colloids Surf. A Physicochem. Eng. Asp. 218(1–3), 151–159 (2003). https://doi.org/10.1016/S0(27-7757(02)00582-4

    Article  CAS  Google Scholar 

  • C.B. Bucur, Z. Sui, J.B. Schlenoff, Ideal mixing in polyelectrolyte complexes and multilayers: Entropy driven assembly. J. Am. Chem. Soc. 128(42), 13690–13691 (2006)

    CAS  Google Scholar 

  • J.A. Burdick, M.M. Stevens, Biomedical hydrogels, in Biomaterials, Artificial Organs and Tissue Engineering, (Woodhead Publishing, 2005), pp. 107–115

    Google Scholar 

  • H. Cai, C. Ni, L. Zhang, Preparation of complex nano-particles based on alginic acid/poly [(2-dimethylamino) ethyl methacrylate] and a drug vehicle for doxorubicin release controlled by ionic strength. Eur. J. Pharm. Sci. 45(1–2), 43–49 (2012)

    CAS  Google Scholar 

  • I. Catelas, J.F. Dwyer, S.A.M. Helgerson, Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Eng. Part C Methods 14(2), 119–128 (2008)

    CAS  Google Scholar 

  • J. Chellapan, A.V. Samrot, A.A. Annamalai, R.K. Bhattacharya, P. Sathiyamoorthy, S.S. Chamarthy, Biopolymer coated coreshell magnetite nanoparticles for rifampicin delivery. Orient. J. Chem. 34(5), 2389 (2018)

    CAS  Google Scholar 

  • W.S. Cheow, K. Hadinoto, Self-assembled amorphous drug–polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J. Colloid Interface Sci. 367(1), 518–526 (2012)

    CAS  Google Scholar 

  • S.H. Ching, N. Bansal, B. Bhandari, Alginate gel particles – a review of production techniques and physical properties. Crit. Rev. Food Sci. Nutr. 57(6), 1133–1152 (2015). https://doi.org/10.1080/104083(8.2014.(65773

    Article  Google Scholar 

  • A.H. Clark, Structural and mechanical properties of biopolymer gels, in Food Polymers, Gels and Colloids, (Woodhead Publishing, 1991), pp. 322–338

    Google Scholar 

  • A.H. Clark, Biopolymer gels. Curr. Opin. Colloid Interface Sci. 1(6), 712–717 (1996)

    CAS  Google Scholar 

  • J.J. Cornelissen, J.J. Donners, R. de Gelder, W.S. Graswinckel, G.A. Metselaar, A.E. Rowan, N.A. Sommerdijk, R.J. Nolte, Β-Helical Polymers from Isocyanopeptides. Science 2(3), 676–680 (2001). https://doi.org/10.1126/science.1062224

    Article  Google Scholar 

  • R.K. Das, V. Gocheva, R. Hammink, O.F. Zouani, A.E. Rowan, Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat. Mater. 15, 318–325 (2015). https://doi.org/10.1038/nmat4483

    Article  CAS  Google Scholar 

  • P.R. Dash, M.L. Read, L.B. Barrett, M.A. Wolfert, L.W. Seymour, Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther. 6(4), 643–650 (1999)

    CAS  Google Scholar 

  • H. Dautzenberg, W. Jaeger, Effect of charge density on the formation and salt stability of polyelectrolyte complexes. Macromol. Chem. Phys. 203(14), 2095–2102 (2002)

    CAS  Google Scholar 

  • H. Dautzenberg, G. Rother, Response of polyelectrolyte complexes to subsequent addition of sodium chloride: Time-dependent static light scattering studies. Macromol. Chem. Phys. 205(1), 114–121 (2004)

    CAS  Google Scholar 

  • K. Deshmukh, M. Basheer Ahamed, R.R. Deshmukh, S.K. Khadheer Pasha, P.R. Bhagat, K. Chidambaram, Biopolymer composites with high dielectric performance: Interface engineering. Biopolym. Composit. Electron., 27–128 (2017)

    Google Scholar 

  • M. Dovedytis, Z.J. Liu, S. Bartlett, Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 1, 102–113 (2020)

    Google Scholar 

  • R. Duan, J. Zhang, L. Liu, W. Cui, J.M. Regenstein, The functional properties and application of gelatin derived from the skin of channel catfish (Ictalurus punctatus). Food Chem 239, 464–469 (2018)

    Google Scholar 

  • K. Dušek, D. Patterson, Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci Part A-2 Polym Phys 6(7), 1209–1216 (1968)

    Google Scholar 

  • K. Dušek, B. Sedláček, Structure and properties of hydrophilic polymers and their gels. XI. Microsyneresis in swollen poly (ethylene glycol methacrylate) gels induced by changes of temperature. Collect Czechoslov Chem Commun 34(1), 136–157 (1969)

    Google Scholar 

  • P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953)

    Google Scholar 

  • J. Fu, J.B. Schlenoff, Driving forces for oppositely charged polyion association in aqueous solutions: Enthalpic, entropic, but not electrostatic. J. Am. Chem. Soc. 138(3), 980–990 (2016)

    CAS  Google Scholar 

  • R. Gheorghita Puscaselu, A. Lobiuc, M. Dimian, M. Covasa, Alginate: from food industry to biomedical applications and management of metabolic disorders. Polymers 12(10), 2417 (2020)

    Google Scholar 

  • M.C. Gómez-Guillén, B. Giménez, M.A. López-Caballero, M.P. Montero, Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocoll. 25(8), 1813–1827 (2011)

    Google Scholar 

  • H. Goodarzi, K. Jadidi, S. Pourmotabed, E. Sharifi, H. Aghamollaei, Preparation and in vitro characterization of cross-linked collagen–gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int. J. Biol. Macromol. 126, 620–632 (2019)

    CAS  Google Scholar 

  • R.C. Gupta, R. Lall, A. Srivastava, A. Sinha, Hyaluronic acid: Molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 192 (2019)

    Google Scholar 

  • P.-E. Gustavsson, P.-O. Son, Monolithic polysaccharide materials. Monolith. Mater. Prep. Prop. Appl., 121–141 (2003). https://doi.org/10.1016/s0301-4770(03)80022-2

  • P. Hashim, M.M. Ridzwan, J. Bakar, M.D. Hashim, Collagen in food and beverage industries. Int Food Res J 22(1), 1 (2015)

    Google Scholar 

  • L. Hench, J. Jones (eds.), Biomaterials, Artificial Organs and Tissue Engineering (Elsevier, 2005)

    Google Scholar 

  • W.E. Hennink, C.V. Nostrum, Department of Pharmaceutics, Utrecht University. Adv. Drug Deliv. Rev. 54, 13–36 (2002)

    CAS  Google Scholar 

  • M. Ishihara, K. Ono, Y. Saito, H. Yura, H. Hattori, T. Matsui, A. Kurita, Photocrosslinkable chitosan: An effective adhesive with surgical applications, in International Congress Series, vol. 1223, (Elsevier, 2001), pp. 251–257

    Google Scholar 

  • M. Jaspers, M. Dennison, M.F. Mabesoone, F.C. MacKintosh, A.E. Rowan, P.H. Kouwer, Ultra-responsive soft matter from strain-stiffening hydrogels. Nat. Commun. 5(1), 1–8 (2014)

    Google Scholar 

  • M. Jaspers, A.C.H. Pape, I.K. Voets, A.E. Rowan, G. Portale, P.H. Kouwer, Bundle formation in biomimetic hydrogels. Biomacromolecules 17(8), 2642–2649 (2016)

    CAS  Google Scholar 

  • J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018)

    CAS  Google Scholar 

  • A.M. Juncan, D.G. Moisă, A. Santini, C. Morgovan, L.L. Rus, A.L. Vonica-Țincu, F. Loghin, Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules 26(15), 4429 (2021)

    CAS  Google Scholar 

  • C. Justin, A.V. Samrot, C.S. Sahithya, K.S. Bhavya, C. Saipriya, Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS One 13(7), e0200440 (2018)

    CAS  Google Scholar 

  • G. Kogan, L. Šoltés, R. Stern, R. Mendichi, Hyaluronic Acid: A Biopolymer with Versatile Physico-chemical and Biological Properties (Handbook of Polymer Research, 2007)

    Google Scholar 

  • J. Kozlowska, N. Stachowiak, A. Sionkowska, Collagen/gelatin/hydroxyethyl cellulose composites containing microspheres based on collagen and gelatin: Design and evaluation. Polymers 10(4), 456 (2018)

    Google Scholar 

  • J.M. Lagarón, Multifunctional and nanoreinforced polymers for food packaging, in Multifunctional and Nanoreinforced Polymers for Food Packaging, (Woodhead Publishing, 2011), pp. 1–28

    Google Scholar 

  • P.Y. Lee, J. Costumbrado, C.Y. Hsu, Y.H. Kim, Agarose gel electrophoresis for the separation of DNA fragments. JoVE 62, e3923 (2012)

    Google Scholar 

  • J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1(12), 1–17 (2016)

    Google Scholar 

  • Y. Li, J. Rodrigues, H. Tomas, Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)

    CAS  Google Scholar 

  • R.I. Litvinov, J.W. Weisel, What is the biological and clinical relevance of fibrin?. In Seminars in thrombosis and hemostasis. Thieme Medical Publishers, 42(04), 333–343 (2016)

    Google Scholar 

  • M. Litwiniuk, A. Krejner, M.S. Speyrer, A.R. Gauto, T. Grzela, Hyaluronic acid in inflammation and tissue regeneration. Wounds 28(3), 78–88 (2016)

    Google Scholar 

  • V.B. Lokeshwar, S. Mirza, A. Jordan, Targeting hyaluronic acid family for cancer chemoprevention and therapy. Adv. Cancer Res. 123, 35–65 (2014)

    Google Scholar 

  • B.D.M. Lopes, V.L. Lessa, B.M. Silva, L.G. La Cerda, Xanthan gum: Properties, production conditions, quality and economic perspective. J. Food. Nutr. Res. 54(3), 185–194 (2015)

    Google Scholar 

  • K. Maekaji, The mechanism of gelation of konjac mannan. Agric. Biol. Chem. 38(2), 315–321 (1974)

    CAS  Google Scholar 

  • J. Maitra, V.K. Shukla, Cross-linking in hydrogels – A review. Am. J. Polym. Sci. 4(2), 25–31 (2014)

    Google Scholar 

  • H.K. Mayer, G. Fiechter, Electrophoretic techniques. Compr. Anal. Chem., 251–278 (2013). https://doi.org/10.1016/b978-0-444-59562-1.00010-4

  • A.S. Medin, Studies of Structure and Properties of Agarose. (1996)

    Google Scholar 

  • J.R. Millar, Improvements relating to ion-exchange resins and their manufacture 1958. UK Patent 849.122. (1960)

    Google Scholar 

  • J.R. Millar, D.G. Smith, T.R.E. Kressman, 45. Solvent-modified polymer networks. Part IV. Styrene–divinyl-benzene copolymers made in the presence of non-solvating diluents. J. Chem. Soc. (Resumed), 304–310 (1965)

    Google Scholar 

  • Mittal, V. Manufacturing of Nanocomposites with Engineering Plastics (2015)

    Google Scholar 

  • M. Mohiti-Asli, E.G. Loboa, Nanofibrous smart bandages for wound care. Wound Healing Biomater., 483–499 (2016)

    Google Scholar 

  • A. Montembault, C. Viton, A. Domard, Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules 6(2), 653–662 (2005)

    CAS  Google Scholar 

  • R. Narayanaswamy, S. Kanagesan, A. Pandurangan, P. Padmanabhan, Basics to different imaging techniques, different nanobiomaterials for image enhancement, in Nanobiomaterials in Medical Imaging, (William Andrew Publishing, 2016), pp. 101–129

    Google Scholar 

  • H.M. Noor, Potential of carrageenans in foods and medical applications. GHMJ 2(2), 32–36 (2018)

    Google Scholar 

  • A. Noori, S.J. Ashrafi, R. Vaez-Ghaemi, A. Hatamian-Zaremi, T.J. Webster, A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed 12, 4937 (2017)

    Google Scholar 

  • E. Papakonstantinou, M. Roth, G. Karakiulakis, Hyaluronic acid: A key molecule in skin aging. Dermato-Endocrinology 4(3), 253–258 (2012)

    CAS  Google Scholar 

  • J.P. Patterson, M.P. Robin, C. Chassenieux, O. Colombani, R.K. O'Reilly, The analysis of solution self-assembled polymeric nanomaterials. Chem. Soc. Rev. 43(8), 2412–2425 (2014)

    CAS  Google Scholar 

  • C. Peetla, A. Stine, V. Labhasetwar, Biophysical interactions with model lipid membranes: Applications in drug discovery and drug delivery. Mol. Pharm. 6(5), 1264–1276 (2009)

    CAS  Google Scholar 

  • S. Petros, T. Tesfaye, M. Ayele, A Review on gelatin based hydrogels for medical textile applications. J Eng (2020)

    Google Scholar 

  • J.C. Phillips, Thermodynamic description of beta amyloid formation using physicochemical scales and fractal bioinformatic scales. ACS Chem. Neurosci. 6(5), 745–750 (2015)

    CAS  Google Scholar 

  • H. Prosen, Applications of liquid-phase microextraction in the sample preparation of environmental solid samples. Molecules 19(5), 6776–6808 (2014)

    Google Scholar 

  • Y. Qin, J. Jiang, L. Zhao, J. Zhang, F. Wang, Applications of alginate as a functional food ingredient. In Biopolymers for food design. Academic Press, pp 409–429 (2018)

    Google Scholar 

  • S. Ramazi, N. Mohammadi, A. Allahverdi, E. Khalili, P. Abdolmaleki, A review on antimicrobial peptides databases and the computational tools. Database 2022 (2022)

    Google Scholar 

  • R.A. Ranasinghe, W.L. Wijesekara, P.R. Perera, S.A. Senanayake, M.M. Pathmalal, R.A. Marapana, Functional and bioactive properties of gelatin extracted from aquatic bioresources–a review. Food Rev Int 38(4), 812–55 (2022)

    Google Scholar 

  • H. Ribeiro, J.P.C. Trigueiro, W.M. Silva, C.F. Woellner, P.S. Owuor, A. Cristian Chipara, et al., Hybrid MoS2/h-BN nanofillers as synergic heat dissipation and reinforcement additives in epoxy nanocomposites. ACS Appl. Mater. Interfaces 11(27), 24485–24492 (2017)

    Google Scholar 

  • J.J. Roberts, P.J. Martens, Engineering biosynthetic cell encapsulation systems, in Biosynthetic Polymers for Medical Applications, (Woodhead Publishing, 2016), pp. 205–239

    Google Scholar 

  • N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300(5622), 1127–1129 (2003)

    CAS  Google Scholar 

  • D.R. Sahoo, T. Biswal, Alginate and its application to tissue engineering. SN Appl. Sci. 3(1), 1–19 (2021)

    Google Scholar 

  • A.V. Samrot, T.C. Sean, Investigating the antioxidant and antimicrobial activity of Artocarpus heterophyllus Lam. (Jackfruit) Latex. Biointerface Res. Appl. Chem. 12, 3019–3033 (2022)

    CAS  Google Scholar 

  • A.V. Samrot, J.L.A. Angalene, S.M. Roshini, S.M. Stefi, R. Preethi, P. Raji, et al., Purification, characterization and utilization of polysaccharide of Araucaria heterophylla gum for the synthesis of curcumin loaded nanocarrier. Int. J. Biol. Macromol. 140, 393–400 (2019)

    CAS  Google Scholar 

  • A.V. Samrot, T. Kudaiyappan, U. Bisyarah, A. Mirarmandi, E. Faradjeva, A. Abubakar, et al., Extraction, purification, and characterization of polysaccharides of Araucaria heterophylla L and Prosopis chilensis L and utilization of polysaccharides in nanocarrier synthesis. Int. J. Nanomedicine 15, 7097 (2020a)

    CAS  Google Scholar 

  • A.V. Samrot, T.C. Sean, T. Kudaiyappan, U. Bisyarah, A. Mirarmandi, E. Faradjeva, et al., Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol. 165, 3088–3105 (2020b)

    CAS  Google Scholar 

  • A.V. Samrot, U. Bisyarah, T. Kudaiyappan, F. Etel, A. Abubakar, Ficus iyrata plant gum derived polysaccharide based nanoparticles and its application. Biocatal. Agric. Biotechnol. 31, 101871 (2021a)

    CAS  Google Scholar 

  • A.V. Samrot, L.S. Jie, S. Abirami, R.E. Renitta, S. Dhiva, P. Prakash, et al., Bioactivity and plant growth stimulation studies using Mangifera indica L Gum. J. Pure Appl. Microbiol. 15(4), 2073–2085 (2021b)

    CAS  Google Scholar 

  • A.V. Samrot, S. Saigeetha, C.Y. Mun, S. Abirami, K. Purohit, P.J. Cypriyana, et al., Utilization of Carica papaya latex on coating of SPIONs for dye removal and drug delivery. Sci. Rep. 11(1), 1–13 (2021c)

    Google Scholar 

  • P. Saranraj, M.A. Naidu, Hyaluronic acid production and its applications–a review. Int J Pharm Biol Arch 4(5), 853–859 (2013)

    Google Scholar 

  • S. Sarkar, D. Das, P. Dutta, J. Kalita, S.B. Wann, P. Manna, Chitosan: A promising therapeutic agent and effective drug delivery system in managing diabetes mellitus. Carbohydr Polym 247, 116594 (2020)

    Google Scholar 

  • D. Schubert, C. Behl, R. Lesley, A. Brack, R. Dargusch, Y. Sagara, H. Kimura, Amyloid peptides are toxic via a common oxidative mechanism. Proc. Natl. Acad. Sci. 92(6), 1989–1993 (1995)

    CAS  Google Scholar 

  • R. Schueller, P. Romanowski (eds.), Conditioning Agents for Hair and Skin (CRC Press, 1999)

    Google Scholar 

  • B.L. Seal, T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Mater. Sci. Eng. R. Rep. 34(4–5), 147–230 (2001)

    Google Scholar 

  • M. Sebastian. Industrial gelatin manufacture–theory and practice (2014)

    Google Scholar 

  • J. Seidl, J. Malinský, K. Dušek, W. Heitz, Makroporöse styrol-divinylbenzol-copolymere und ihre verwendung in der chromatographie und zur darstellung von ionenaustauschern, in Fortschritte der Hochpolymeren-Forschung, (Springer, Berlin/Heidelberg, 1967), pp. 113–213

    Google Scholar 

  • P. Seth, A. Bhattacharya, S. Agarwal, R.M. Tripathi, A. Thahriani, P. Gianchandani, Collagen: A review article. Pharma Innov. J. 2018(799), 203–207 (2018)

    Google Scholar 

  • A. Shaharudin, Z. Aziz, Effectiveness of hyaluronic acid and its derivatives on chronic wounds: A systematic review. J. Wound Care 25(10), 585–592 (2016). https://doi.org/10.12968/jowc.2016.25.10.585

    Article  CAS  Google Scholar 

  • L. Shanshan, D.M. Dudek, Y. Cao, M.M. Balamurali, J. Gosline, H. Li, Designed biomaterials to mimic the mechanical properties of muscles. Nature 465(7294), 69–73 (2010)

    Google Scholar 

  • N. Shobana, P. Senthil Kumar, P. Raji, V.A. Samrot, Utilization of crab shell-derived chitosan in nanoparticle synthesis for Curcumin delivery 48(08), 1183–1188 (2019)

    Google Scholar 

  • N. Shobana, P. Prakash, A.V. Samrot, P.J. Jane Cypriyana, P. Kajal, M. Sathiyasree, et al., Purification and characterization of gum-derived polysaccharides of Moringa oleifera and Azadirachta indica and their applications as plant stimulants and bio-pesticidal agents. Molecules 27(12), 3720 (2022)

    CAS  Google Scholar 

  • V.K. Singh, I. Banerjee, T. Agarwal, K. Pramanik, M.K. Bhattacharya, K. Pal, Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B: Biointerfaces 123, 582–592 (2014)

    CAS  Google Scholar 

  • A. Sionkowska, K. Adamiak, K. Musiał, M. Gadomska, Collagen based materials in cosmetic applications: A review. Materials 13(19), 4217 (2020)

    CAS  Google Scholar 

  • V. Subramanian, D. Varade, Thermoelectric properties of biopolymer composites, in Biopolymer Composites in Electronics, (Elsevier, 2017), pp. 155–183

    Google Scholar 

  • Z. Sui, D. Salloum, J.B. Schlenoff, Effect of molecular weight on the construction of polyelectrolyte multilayers: Stripping versus sticking. Langmuir 19(6), 2491–2495 (2003)

    CAS  Google Scholar 

  • H.G. Sundararaghavan, J.A. Burdick, Cell encapsulation. Compr. Biomater., 115–130 (2011). https://doi.org/10.1016/b(78-0-08-0552(4-1.00163-x

  • M. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, K. Winnicka, Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int. J. Polym. Sci. 2016, 1–17 (2016). https://doi.org/10.1155/2016/7697031

    Article  CAS  Google Scholar 

  • H. Tabani, S. Asadi, S. Nojavan, M. Parsa, Introduction of agarose gel as a green membrane in electromembrane extraction: An efficient procedure for the extraction of basic drugs with a wide range of polarities. J. Chromatogr. A 1497, 47–55 (2017)

    CAS  Google Scholar 

  • T. Takahashi, K. Takayama, Y. Machida, T. Nagai, Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int. J. Pharm. 61(1–2), 35–41 (1990)

    CAS  Google Scholar 

  • R. Tammi, J.A. Ripellino, R.U. Margolis, H.I. Maibach, M. Tammi, Hyaluronate accumulation in human epidermis treated with retinoic acid in skin organ culture. J. Investig. Dermatol. 92(3) (1989). https://doi.org/10.1111/1523-1747.ep12277125

  • K. Ueno, H. Ueno, T. Sato, Colloidal polyion complexation from sodium poly (acrylate) and poly (vinyl ammonium) chloride in aqueous solution. Polym. J. 44(1), 59–64 (2012). https://doi.org/10.1038/pj.2011.65

    Article  CAS  Google Scholar 

  • A.M. van Buul, E. Schwartz, P. Brocorens, M. Koepf, D. Beljonne, J.C. Maan, et al., Stiffness versus architecture of single helical polyisocyanopeptides. Chem. Sci. 4(6), 2357–2363 (2013)

    Google Scholar 

  • S. Van Vlierberghe, G.J. Graulus, S.K. Samal, I. Van Nieuwenhove, P. Dubruel, Porous hydrogel biomedical foam scaffolds for tissue repair, in Biomedical Foams for Tissue Engineering Applications, (Woodhead, 2014), pp. 335–390

    Google Scholar 

  • C. Viebke, L. Piculell, S. Nilsson, On the mechanism of gelation of helix-forming biopolymers. Macromolecules 27(15), 4160–4166 (1994)

    Google Scholar 

  • D.J. Waters, K. Engberg, R. Parke-Houben, L. Hartmann, C.N. Ta, M.F. Toney, C.W. Frank, Morphology of photopolymerized end-linked poly (ethylene glycol) hydrogels by small-angle X-ray scattering. Macromolecules 43(16), 6861–6870 (2010)

    CAS  Google Scholar 

  • H. Watson, Biological membranes. Essays Biochem. 59, 43–69 (2015)

    Google Scholar 

  • R. Weinberger, Size separations in capillary gels and polymer networks. Pract. Capill. Electrophor., 245–292 (2000)

    Google Scholar 

  • L.W. Xia, R. Xie, X.J. Ju, W. Wang, Q. Chen, L.Y. Chu, Nano-structured smart hydrogels with rapid response and high elasticity. Nat. Commun. 4(1), 1–11 (2013)

    Google Scholar 

  • E. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116(22), 13752–13990 (2016)

    CAS  Google Scholar 

  • J. Yuan, Z. Zhang, M. Yang, F. Guo, X. Men, W. Liu, Carbon nanotubes coated hybrid-fabric composites with enhanced mechanical and thermal properties for tribological applications. Compos. A: Appl. Sci. Manuf. 102, 243–252 (2017)

    CAS  Google Scholar 

  • D.V. Zasypkin, E.E. Braudo, V.B. Tolstoguzov, Multicomponent biopolymer gels. Food Hydrocoll. 11(2), 159–170 (1997)

    CAS  Google Scholar 

  • X.H. Zhao, N. Huebsch, D.J. Mooney, Z.G. Suo, Appl. Phys. 107 (2010)

    Google Scholar 

  • A. Zintchenko, G. Rother, H. Dautzenberg, Transition highly aggregated complexes soluble complexes via polyelectrolyte exchange reactions: Kinetics, structural changes, and mechanism. Langmuir 19(6), 2507–2513 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Samrot, A.V. et al. (2023). Biopolymer-Based Gels. In: Thomas, S., AR, A., Jose Chirayil, C., Thomas, B. (eds) Handbook of Biopolymers . Springer, Singapore. https://doi.org/10.1007/978-981-19-0710-4_17

Download citation

Publish with us

Policies and ethics