Skip to main content

Current Research State on Interface Dynamics of Spindle-Toolholder

  • Conference paper
  • First Online:
Advanced Manufacturing and Automation XI (IWAMA 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 880))

Included in the following conference series:

  • 1630 Accesses

Abstract

Contact characteristics of joint surface of high-speed spindle-toolholder/toolholder-tool not only have important influences on dynamics of the spindle, also closely related to the stability of high-speed cutting. Accurate modeling and identification of the spindle-toolholder or toolholder-tool joint not only helps to improve the prediction accuracy of the dynamics of the spindle system in the design stage, also guide the assembly process and correct selection of cutting parameters in the cutting stage. In this paper, the dynamics modeling methods of the spindle-toolholder joint surface were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Olvera, D., Lacalle, L., Compeán, F., et al.: Analysis of the tool tip radial stiffness of turn-milling centers. Int. J. Adv. Manuf. Technol. 60(9–12), 883–891 (2012)

    Article  Google Scholar 

  2. Li, H., Shin, Y.: Integrated dynamic thermo-mechanical modeling of high speed spindles, part 1: model development. J. Manuf. Sci. Eng. 126(1), 148–158 (2004)

    Article  Google Scholar 

  3. Zhang Xueliang, X.U., Kening, W.S.: Review and prospect of the research on the static and dynamic characteristics of machine joint surfaces. J. Taiyuan Heavymach. Inst. 23(3), 276–281 (2002)

    Google Scholar 

  4. Xu, C., Zhang, J., Wu, Z., et al.: Dynamic modeling and parameters identification of a spindle-holder taper joint. Int. J. Adv. Manuf. Technol. 67(5–8), 1517–1525 (2013)

    Article  Google Scholar 

  5. Tian, H., Li, B., Liu, H., et al.: A new method of virtual material hypothesis-based dynamic modeling on fixed joint interface in machine tools. Int. J. Mach. Tools Manuf 51(3), 239–249 (2011)

    Article  Google Scholar 

  6. Mao, K., Li, B., Wu, J., et al.: Stiffness influential factors-based dynamic modeling and its parameter identification method of fixed joints in machine tools. Int. J. Mach. Tools Manuf 50(2), 156–164 (2010)

    Article  Google Scholar 

  7. Yang, Y., Wan, M., Ma, Y.C., et al.: An improved method for tool point dynamics analysis using a bi-distributed joint interface model. Int. J. Mech. Sci. 105, 239–252 (2016)

    Article  Google Scholar 

  8. Namazi, M.: Mechanics and Dynamics of the Tool Holder-Spindle Interface, University of British Columbia (2006)

    Google Scholar 

  9. Schmitz, T., Donalson, R.: Predicting high-speed machining dynamics by substructure analysis. CIRP Ann. Manuf. Technol. 49(1), 303–308 (2000)

    Article  Google Scholar 

  10. Yang, Y., Zhang, W., Ma, Y., et al.: Generalized method for the analysis of bending, torsional and axial receptances of tool–holder–spindle assembly. Int. J. Mach. Tools Manuf 99, 48–67 (2015)

    Article  Google Scholar 

  11. Namazi, M., Altintas, Y., Abe, T., et al.: Modeling and identification of tool holder–spindle interface dynamics. Int. J. Mach. Tools Manuf 47(9), 1333–1341 (2007)

    Article  Google Scholar 

  12. Movahhedy, M., Gerami, J.: Prediction of spindle dynamics in milling by sub-structure coupling. Int. J. Mach. Tools Manuf 46(3), 243–251 (2006)

    Article  Google Scholar 

  13. Ahmadi, K., Ahmadian, H.: Modelling machine tool dynamics using a distributed parameter tool–holder joint interface. Int. J. Mach. Tools Manuf 47(12), 1916–1928 (2007)

    Article  Google Scholar 

  14. Ahmadian, H., Nourmohammadi, M.: Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces. Int. J. Mach. Tools Manuf 50(11), 998–1005 (2010)

    Article  Google Scholar 

  15. Grossi, N., Montevecchi, F., Scippa, A., et al.: 3D finite element modeling of holder-tool assembly for stability prediction in milling. Procedia Cirp 31, 527–532 (2015)

    Article  Google Scholar 

  16. Wan, A.: Research on Experiment and Calculation Method of Dynamic Characteristics of Mechanical Joint Surface. Wuhan University of Technology (2012)

    Google Scholar 

  17. Xueliang, Z., Huang Yumei, F., Weiping, et al.: Fractal model of normal contact stiffness between roughness surfaces. Chinese J. Appl. Mech. 17(2), 31–35 (2000)

    Google Scholar 

  18. Bhushan, B.: Introduction to Tribology. Wiley, New York (2002)

    Google Scholar 

  19. Han, Z., Qi, C., Kang, H.: Fractal model of normal contact stiffness between two cylinders’ joint interfaces. J. Mech. Eng. 47(7), 53–58 (2011)

    Article  Google Scholar 

  20. Zhao, Y., Song, X., Cai, L., et al.: Surface fractal topography-based contact stiffness determination of spindle–toolholder joint. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 230(4), 602–610 (2016)

    Article  Google Scholar 

  21. Du, F., Li, B., Zhang, J., et al.: Ultrasonic measurement of contact stiffness and pressure distribution on spindle–holder taper interfaces. Int. J. Mach. Tools Manuf 97, 18–28 (2015)

    Article  Google Scholar 

  22. Erzurumlu, T., Oktem, H.: Comparison of response surface model with neural network in determining the surface quality of moulded parts. Mater. Des. 28(2), 459–465 (2007)

    Article  Google Scholar 

  23. Xueliang, Z., Yumei, H., Shuhua, W.: Modeling and application of static foundation characteristic parameters of machine tool joint surface. Manuf. Technol. Mach. Tool 11, 8–10 (1997)

    Google Scholar 

  24. Yang Hongping, F.U., Weiping, S.B.: Modeling of machined joints normal stiffness using modified PSO-BP neural network algorithm. Trans. Chinese Soc. Agric. Mach. 42(3), 119–223 (2011)

    Google Scholar 

  25. Sonbaty, I.A., Khashaba, U., Selmy, A., et al.: Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. J. Mater. Process. Technol. 200(1–3), 271–278 (2008)

    Article  Google Scholar 

  26. Gagnol, V., L, et al.: Modal identification of spindle-tool unit in high-speed machining. Mech. Syst. Signal Process. 25(7), 2388–2398 (2011)

    Article  Google Scholar 

  27. Rantatalo, M., Aidanpää, J., Göransson, B., et al.: Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement. Int. J. Mach. Tools Manuf 47(7), 1034–1045 (2007)

    Article  Google Scholar 

  28. Jiang, Y., Liu, X., Wu, S., et al.: Dynamics characteristics of the spindle system with the interface and axial milling force. J. Mech. Eng. 51(19), 66–74 (2015)

    Google Scholar 

  29. Xu, C., Zhang, J., Feng, P., et al.: Characteristics of stiffness and contact stress distribution of a spindle-holder taper joint under clamping and centrifugal forces. Int. J. Mach. Tools Manuf 82–83(7), 21–28 (2014)

    Article  Google Scholar 

  30. Zhao, Y., Xu, J., Cai, L., et al.: Contact stiffness analysis of spindle-toolholder system with high speed, J. Huazhong Univ. Sci. Technol. (Natural Science Edition), 44(7), 91–95 (2016)

    Google Scholar 

Download references

Acknowledgment

This work was financially supported by Open Research Fund by Jiangsu Key La-boratory of Recycling and Reuse Technology for Mechanical and Electronic Products (RPME-KF1609).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Te Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, T., Xu, Z., Guan, J., Song, J. (2022). Current Research State on Interface Dynamics of Spindle-Toolholder. In: Wang, Y., Martinsen, K., Yu, T., Wang, K. (eds) Advanced Manufacturing and Automation XI. IWAMA 2021. Lecture Notes in Electrical Engineering, vol 880. Springer, Singapore. https://doi.org/10.1007/978-981-19-0572-8_60

Download citation

Publish with us

Policies and ethics