Skip to main content

Prevalence of Extended Spectrum Beta Lactamase (ESBL)-Producing E. coli: A Systematic Overview

  • Living reference work entry
  • First Online:
Handbook on Antimicrobial Resistance

Abstract

The introduction and widespread transmission of Escherichia coli that produces extended-spectrum β-lactamases (ESBLs) pose an extreme task in controlling healthcare- and community-associated infections. The transmission of genes of obduracy by means of horizontal or clonal development could possibly enhance the swiftness in incidence of ESBL E. coli in the environment. When the virulent pathotypes possess the ESBL genes, it results in the population with increased risk of being infected, and all the treatment strategies become ineffective. Thus, it is necessary to further investigate the ways and means of perseverance of ESBL genes among clinical as well as community settings, and its diagnosis should also be done to find unknown carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Axelsson, C., Rehnstam-Holm, A. S., & Nilson, B. (2020). Rapid detection of antibiotic resistance in positive blood cultures by MALDI-TOF MS and an automated and optimized MBT-ASTRA protocol for Escherichia coli and Klebsiella pneumoniae. Infectious Diseases, 52, 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Bauernfeind, A., Stemplinger, I., Jungwirth, R., Mangold, P., Amann, S., Akalin, E., Ang, O., Bal, C., & Casellas, J. M. (1996). Characterization of β--lactamase gene blaPER-2, which encodes an extended-spectrum class A β--lactamase. Antimicrobial Agents and Chemotherapy, 40, 616–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianco, G., Boattini, M., Van Asten, S. A., Iannaccone, M., Zanotto, E., Zaccaria, T., Bernards, A. T., Cavallo, R., & Costa, C. (2020). RESIST-5 OOKNV and NG-Test Carba 5 assays for the rapid detection of carbapenemase-producing Enterobacterales from positive blood cultures: A comparative study. The Journal of Hospital Infection, 105, 162–166.

    Article  CAS  PubMed  Google Scholar 

  • Black, J. A., Moland, E. S., & Thomson, K. S. (2005). AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. Journal of Clinical Microbiology, 43, 3110–3113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogaerts, P., Galimand, M., Bauraing, C., Deplano, A., Vanhoof, R., De Mendonca, R., Rodriguez-Villalobos, H., Struelens, M., & Glupczynski, Y. (2007). Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. The Journal of Antimicrobial Chemotherapy, 59, 459–464.

    Article  CAS  PubMed  Google Scholar 

  • Boutal, H., Naas, T., Devilliers, K., Oueslati, S., Dortet, L., Bernabeu, S., Simon, S., & Volland, H. (2017). Development and validation of a lateral flow immunoassay for rapid detection of NDM-producing Enterobacteriaceae. Journal of Clinical Microbiology, 55, 2018–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boutal, H., Vogel, A., Bernabeu, S., Devilliers, K., Creton, E., Cotellon, G., Plaisance, M., Oueslati, S., Dortet, L., Jousset, A., & Simon, S. (2018). A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP-and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. The Journal of Antimicrobial Chemotherapy, 73, 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branger, C., Zamfir, O., Geoffroy, S., Laurans, G., Arlet, G., Thien, H. V., Gouriou, S., Picard, B., & Denamur, E. (2005). Genetic background of Escherichia coli and extended-spectrum β-lactamase type. Emerging Infectious Diseases, 11, 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of -lactamases. Antimicrobial Agents and Chemotherapy, 54, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Cantón, R., & Coque, T. M. (2006). The CTX-M β-lactamase pandemic. Current Opinion in Microbiology, 9, 466–475.

    Article  PubMed  Google Scholar 

  • Carattoli, A. (2013). Plasmids and the spread of resistance. International Journal of Medical Microbiology, 303, 298304.

    Article  Google Scholar 

  • Chen, Y. T., Lauderdale, T. L., Liao, T. L., Shiau, Y. R., Shu, H. Y., Wu, K. M., Yan, J. J., Su, I. J., & Tsai, S. F. (2007). Sequencing and comparative genomic analysis of pK29, a 269-kilobase conjugative plasmid encoding CMY-8 and CTX-M-3 -lactamases in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 51, 3004–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clermont, O., Dhanji, H., Upton, M., Gibreel, T., Fox, A., Boyd, D., Mulvey, M. R., Nordmann, P., Ruppé, E., Sarthou, J. L., & Frank, T. (2009). Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. The Journal of Antimicrobial Chemotherapy, 64, 274–277.

    Article  CAS  PubMed  Google Scholar 

  • Cloeckaert, A., Praud, K., Doublet, B., Bertini, A., Carattoli, A., Butaye, P., Imberechts, H., Bertrand, S., Collard, J. M., Arlet, G., & Weill, F. X. (2007). Dissemination of an extended-spectrum-β-lactamase bla TEM-52 gene-carrying IncI1 plasmid in various Salmonella enterica serovars isolated from poultry and humans in Belgium and France between 2001 and 2005. Antimicrobial Agents and Chemotherapy, 51, 1872–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cormican, M. G., Marshall, S. A., & Jones, R. N. (1996). Detection of extended-spectrum β--lactamase (ESBL)-producing strains by the Etest ESBL screen. Journal of Clinical Microbiology, 34, 1880–1884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Correa-Martínez, C. L., Idelevich, E. A., Sparbier, K., Kostrzewa, M., & Becker, K. (2019). Rapid detection of extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases in Enterobacterales: Development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. Frontiers in Microbiology, 10, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Andrea, M. M., Arena, F., Pallecchi, L., & Rossolini, G. M. (2013). CTX-M-type β-lactamases: A successful story of antibiotic resistance. International Journal of Medical Microbiology Supplements, 303, 305–317.

    Article  Google Scholar 

  • D’Andrea, M. M., Nucleo, E., Luzzaro, F., Giani, T., Migliavacca, R., Vailati, F., Kroumova, V., Pagani, L., & Rossolini, G. M. (2006). CMY-16, a novel acquired AmpC-type β-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy. Antimicrobial Agents and Chemotherapy, 50, 618–624.

    Article  PubMed  PubMed Central  Google Scholar 

  • Demord, A., Poirel, L., D’Emidio, F., Pomponio, S., & Nordmann, P. (2021). Rapid ESBL NP test for rapid detection of expanded-spectrum β-lactamase producers in Enterobacterales. Microbial Drug Resistance, 27, 1131–1135.

    Article  CAS  PubMed  Google Scholar 

  • Dortet, L., Poirel, L., Nordmann, P. (2015). Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerging Infectious Diseases, 21(3), 504–507. https://doi.org/10.3201/eid2103.141277

  • Drieux, L., Brossier, F., Sougakoff, W., & Jarlier, V. (2008). Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: Review and bench guide. Clinical Microbiology and Infection, 14, 90–103.

    Article  CAS  PubMed  Google Scholar 

  • Ender, P. T., Gajanana, D., Johnston, B., Clabots, C., Tamarkin, F. J., & Johnson, J. R. (2009). Transmission of an extended-spectrum-β--lactamase-producing Escherichia coli (sequence type ST131) strain between a father and daughter resulting in septic shock and emphysematous pyelonephritis. Journal of Clinical Microbiology, 47, 3780–3782.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewers, C. A., Bethe, A., Semmler, T., Guenther, S., & Wieler, L. H. (2012). Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clinical Microbiology and Infection, 18, 646–655.

    Article  CAS  PubMed  Google Scholar 

  • Faria-Ramos, I., Espinar, M. J., Rocha, R., Santos-Antunes, J., Rodrigues, A. G., Cantón, R., & Pina-Vaz, C. (2013). A novel flow cytometric assay for rapid detection of extended-spectrum β--lactamases. Clinical Microbiology and Infection, 19, E8–15.

    Article  Google Scholar 

  • Garcia-Fernández, S., Morosini, M. I., Marco, F., Gijón, D., Vergara, A., Vila, J., Ruiz-Garbajosa, P., & Cantón, R. (2015). Evaluation of the eazyplex® SuperBug CRE system for rapid detection of carbapenemases and ESBLs in clinical Enterobacteriaceae isolates recovered at two Spanish hospitals. The Journal of Antimicrobial Chemotherapy, 70, 1047–1050.

    Article  PubMed  Google Scholar 

  • Girlich, D., Poirel, L., Leelaporn, A., Karim, A., Tribuddharat, C., Fennewald, M., & Nordmann, P. (2001). Molecular epidemiology of the integron-located VEB-1 extended-spectrum β-lactamase in nosocomial enterobacterial isolates in Bangkok, Thailand. Journal of Clinical Microbiology, 39, 175–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glupczynski, Y., Jousset, A., Evrard, S., Bonnin, R. A., Huang, T. D., Dortet, L., Bogaerts, P., & Naas, T. (2017). Prospective evaluation of the OKN K-SeT assay, a new multiplex immunochromatographic test for the rapid detection of OXA-48-like, KPC and NDM carbapenemases. The Journal of Antimicrobial Chemotherapy, 72, 1955–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grundt, A., Findeisen, P., Miethke, T., Jäger, E., Ahmad-Nejad, P., & Neumaier, M. (2012). Rapid detection of ampicillin resistance in Escherichia coli by quantitative mass spectrometry. Journal of Clinical Microbiology, 50, 1727–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guenther, S., Ewers, C., & Wieler, L. H. (2011). Extended-spectrum β--lactamases producing E. coli in wildlife, yet another form of environmental pollution? Frontiers in Microbiology, 2, 246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hope, R., Warner, M., Potz, N. A., Fagan, E. J., James, D., & Livermore, D. M. (2006). Activity of tigecycline against ESBL-producing and AmpC-hyperproducing Enterobacteriaceae from south-east England. The Journal of Antimicrobial Chemotherapy, 58, 1312–1314.

    Article  CAS  PubMed  Google Scholar 

  • Ikryannikova, L. N., Shitikov, E. A., Zhivankova, D. G., Il’ina, E. N., Edelstein, M. V., & Govorun, V. M. (2008). A MALDI TOF MS-based minisequencing method for rapid detection of TEM-type extended-spectrum β--lactamases in clinical strains of Enterobacteriaceae. Journal of Microbiological Methods, 75, 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Jacoby, G. A., & Medeiros, A. A. (1991). More extended-spectrum β-lactamases. Antimicrobial Agents Chemotherapy, 35, 1697–1704. https://doi.org/10.1128/AAC.35.9.1697

  • Jaurin, B., Grundström, T., Edlund, T., & Normark, S. (1981). The E. coli -lactamase attenuator mediates growth rate-dependent regulation. Nature, 290, 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Jung, J. S., Popp, C., Sparbier, K., Lange, C., Kostrzewa, M., & Schubert, S. (2014). Evaluation of matrix-assisted laser desorption ionization–time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. Journal of Clinical Microbiology, 52, 924–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanokudom, S., Assawakongkarat, T., Akeda, Y., Ratthawongjirakul, P., Chuanchuen, R., & Chaichanawongsaroj, N. (2021). Rapid detection of extended spectrum β-lactamase producing Escherichia coli isolated from fresh pork meat and pig cecum samples using multiplex recombinase polymerase amplification and lateral flow strip analysis. PLoS One, 16, e0248536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Jeon, S., Rhie, H., Lee, B., Park, M., Lee, H., Lee, J., & Kim, S. (2009). Rapid detection of extended spectrum β-lactamase (ESBL) for Enterobacteriaceae by use of a multiplex PCR-based method. Infection & Chemotherapy, 41, 181–184.

    Article  Google Scholar 

  • Köhler, C. D., & Dobrindt, U. (2011). What defines extra-intestinal pathogenic Escherichia coli? International Journal of Medical Microbiology, 301, 642–647.

    Article  PubMed  Google Scholar 

  • Liu, S. Y., Su, L. H., Yeh, Y. L., Chu, C., Lai, J. C., & Chiu, C. H. (2007). Characterisation of plasmids encoding CTX-M-3 extended-spectrum β-lactamase from Enterobacteriaceae isolated at a university hospital in Taiwan. International Journal of Antimicrobial Agents, 29, 440–445.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L., Ishii, Y., Ishiguro, M., Matsuzawa, H., & Yamaguchi, K. (1998). Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrobial Agents and Chemotherapy, 42, 1181–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madec, J. Y., Haenni, M., Métayer, V., Saras, E., & Nicolas-Chanoine, M. H. (2015). High prevalence of the animal-associated bla CTX-M-1 IncI1/ST3 plasmid in human Escherichia coli isolates. Antimicrobial Agents and Chemotherapy, 59, 5860–5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meletis, G. (2016). Carbapenem resistance: Overview of the problem and future perspectives. Therapeutic Advances in Infectious Disease, 3, 15–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miriagou, V., Tzouvelekis, L. S., Villa, L., Lebessi, E., Vatopoulos, A. C., Carattoli, A., & Tzelepi, E. (2004). CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrobial Agents and Chemotherapy, 48, 3172–3174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M’Zali, F. H., Chanawong, A., Kerr, K. G., Birkenhead, D., & Hawkey, P. M. (2000). Detection of extended-spectrum β-lactamases in members of the family enterobacteriaceae: Comparison of the MAST DD test, the double disc and the Etest ESBL. The Journal of Antimicrobial Chemotherapy, 45, 881–885.

    Article  PubMed  Google Scholar 

  • Naas, T., Mikami, Y., Imai, T., Poirel, L., & Nordmann, P. (2001). Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. Journal of Bacteriology, 183, 235–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naas, T., Cuzon, G., Villegas, M., Lartigue, M., Quinn, J. P., & Nordmann, P. (2008). Genetic structures at the origin of acquisition of the -lactamase blaKPC gene. Antimicrobial Agents and Chemotherapy, 52, 1257–1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naas, T., Cuzon, G., Truong, H., Bernabeu, S., & Nordmann, P. (2010). Evaluation of a DNA microarray, the Check-Points ESBL/KPC array, for rapid detection of TEM, SHV, and CTX-M extended-spectrum β-lactamases and KPC carbapenemases. Antimicrobial Agents and Chemotherapy, 54, 3086–3092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navon-Venezia, S., Chmelnitsky, I., Leavitt, A., Schwaber, M. J., Schwartz, D., & Carmeli, Y. (2006). Plasmid-mediated imipenem-hydrolyzing enzyme KPC-2 among multiple carbapenem-resistant Escherichia coli clones in Israel. Antimicrobial Agents and Chemotherapy, 50, 3098–3101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NCBIa. https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/SHV

  • NCBIb. https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/TEM

  • Nicolas-Chanoine, M. H., Blanco, J., Leflon-Guibout, V., Demarty, R., Alonso, M. P., Canica, M. M., Park, Y. J., Lavigne, J. P., Pitout, J., & Johnson, J. R. (2008). Intercontinental emergence of Escherichia coli clone O25:H4- ST131 producing CTX-M-15. The Journal of Antimicrobial Chemotherapy, 61, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Nicolas-Chanoine, M. H., Bertrand, X., & Madec, J. Y. (2014). Escherichia coli ST131, an intriguing clonal group. Clinical Microbiology Reviews, 27, 543–574.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordmann, P., Dortet, L., & Poirel, L. (2012). Rapid detection of extended-spectrum-β-lactamase-producing Enterobacteriaceae. Journal of Clinical Microbiology, 50, 3016–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordmann, P., Sadek, M., Demord, A., & Poirel, L. (2020). NitroSpeed-Carba NP test for rapid detection and differentiation between different classes of carbapenemases in Enterobacterales. Journal of Clinical Microbiology, 58, e00932–e00920.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novick, R. P. (1987). Plasmid incompatibility. Microbiological Reviews, 51, 38195.

    Article  Google Scholar 

  • Pana, Z. D., & Zaoutis, T. (2018). Treatment of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBLs) infections: What have we learned until now? F1000Res, 7.

    Google Scholar 

  • Papp-Wallace, K. M., Winkler, M. L., Taracila, M. A., & Bonomo, R. A. (2015). Variants of β-lactamase KPC-2 that are resistant to inhibition by avibactam. Antimicrobial Agents and Chemotherapy, 59, 3710–3717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, S. R. (2007). Genetic environment of ISEcp 1 and bla ACC-1. Antimicrobial Agents and Chemotherapy, 51, 2658–2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, S. R., & Hall, R. M. (2003). In34, a complex In5 family class 1 integron containing orf513 and dfrA10. Antimicrobial Agents and Chemotherapy, 47, 342–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, S. R., & Hall, R. M. (2005). Evolution of transposons containing bla TEM genes. Antimicrobial Agents and Chemotherapy, 49, 1267–1268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: a clinical update. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005

  • Payne, D. J., Woodford, N., & Amyes, S. G. B. (1992). Characterization of the plasmid mediated -lactamase BIL-1. The Journal of Antimicrobial Chemotherapy, 30, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Picard, B., Garcia, J. S., Gouriou, S., Duriez, P., Brahimi, N., Bingen, E., Elion, J., & Denamur, E. (1999). The link between phylogeny and virulence in Escherichia coli extra-intestinal infection. Infection and Immunity, 67, 546–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitout, J. D., & Laupland, K. B. (2008). Extended-spectrum β--lactamase producing Enterobacteriaceae: An emerging public-health concern. The Lancet Infectious Diseases, 8, 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Pitout, J. D., Thomson, K. S., Hanson, N. D., Ehrhardt, A. F., Moland, E. S., & Sanders, C. C. (1998). β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrobial Agents and Chemotherapy, 42, 1350–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel, L., Naas, T., Guibert, M., Chaibi, E. B., Labia, R., & Nordmann, P. (1999). Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum b-lactamase encoded by an Escherichia coli integron gene. Antimicrobial Agents and Chemotherapy, 43, 573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel, L., Van De Loo, M., Mammeri, H., & Nordmann, P. (2005). Association of plasmid-mediated quinolone resistance with extended-spectrum b-lactamase VEB-1. Antimicrobial Agents and Chemotherapy, 49, 3091–3094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel, L., Leviandier, C., & Nordmann, P. (2006). Prevalence and genetic analysis of plasmid-mediated quinolone resistance determinants QnrA and QnrS in Enterobacteriaceae isolates from a French university hospital. Antimicrobial Agents and Chemotherapy, 50, 3992–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirel, L., Naas, T., & Nordmann, P. (2008). Genetic support of extended-spectrum β-lactamases. Clinical Microbiology and Infection, 14, 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Poirel, L., Naas, T., & Nordmann, P. P. (2010). Diversity, epidemiology, and genetics of class D -lactamases. Antimicrobial Agents and Chemotherapy, 54, 24–38.

    Article  CAS  PubMed  Google Scholar 

  • Poirel, L., Bernabeu, S., Fortineau, N., Podglajen, I., Lawrence, C., & Nordmann, P. (2011). Emergence of OXA-48-producing Escherichia coli clone ST38 in France. Antimicrobial Agents and Chemotherapy, 55, 4937–4938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomba, C., Mendonça, N., Costa, M., Louro, D., Baptista, B., Ferreira, M., Correia, J. D., & Caniça, M. (2006). Improved multiplex PCR method for the rapid detection of β-lactamase genes in Escherichia coli of animal origin. Diagnostic Microbiology and Infectious Disease, 56, 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Queenan, A. M., Foleno, B., Gownley, C., Wira, E., & Bush, K. (2004). Effects of inoculum and β-lactamase activity in AmpC-and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. Journal of Clinical Microbiology, 42, 269–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Siek, K. E., Giddings, C. W., Doetkott, C., Johnson, T. J., Fakhr, M. K., & Nolan, L. K. (2005). Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading, England), 151, 2097–2110.

    Article  CAS  PubMed  Google Scholar 

  • Roer, L., Overballe-Petersen, S., Hansen, F., Schønning, K., Wang, M., Røder, B. L., Hansen, D. S., Justesen, U. S., Andersen, L. P., Fulgsang-Damgaard, D., & Hopkins, K. L. (2018). Escherichia coli sequence type 410 is causing new international high-risk clones. Msphere., 3, e00337-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roschanski, N., Fischer, J., Guerra, B., & Roesler, U. (2014). Development of a multiplex real-time PCR for the rapid detection of the predominant β--lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS One, 9, e100956.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samra, Z., Bahar, J., Madar-Shapiro, L., Aziz, N., Israel, S., & Bishara, J. (2008). Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. Journal of Clinical Microbiology, 46, 3110–3111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders, C. C., Barry, A. L., Washington, J. A., Shubert, C., Moland, E. S., Traczewski, M. M., Knapp, C., & Mulder, R. (1996). Detection of extended-spectrum-β--lactamase-producing members of the family Enterobacteriaceae with Vitek ESBL test. Journal of Clinical Microbiology, 34, 2997–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarowska, J., Futoma-Koloch, B., Jama-Kmiecik, A., Frej-Madrzak, M., Ksiazczyk, M., Bugla-Ploskonska, G., & Choroszy-Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathogens, 11, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaufler, K., Semmler, T., Wieler, L. H., Wöhrmann, M., Baddam, R., Ahmed, N., Müller, K., Kola, A., Fruth, A., Ewers, C., & Guenthe, S. (2016). Clonal spread and interspecies transmission of clinically relevant ESBL-producing Escherichia coli of ST410—Another successful pandemic clone? FEMS Microbiology Ecology, 92, fiv155.

    Article  PubMed  Google Scholar 

  • Smet, A., Martel, A., Persoons, D., Dewulf, J., Heyndrickx, M., Herman, L., Haesebrouck, F., & Butaye, P. (2010). Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: Molecular aspects, mobility and impact on public health. FEMS Microbiology Reviews, 34, 295–316.

    Article  CAS  PubMed  Google Scholar 

  • Soilleux, M. J., Morand, A. M., Arlet, G. J., Scavizzi, M. R., & Labia, R. (1996). Survey of Klebsiella pneumoniae producing extended-spectrum β--lactamases: Prevalence of TEM-3 and first identification of TEM-26 in France. Antimicrobial Agents and Chemotherapy, 40, 1027–1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart, J. C., & Leverstein-Van Hall M.A. (2010). Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. International Journal of Antimicrobial Agents, 36(3), 205.

    Google Scholar 

  • Stürenburg, E., Sobottka, I., Feucht, H. H., Mack, D., & Laufs, R. (2003). Comparison of BDPhoenix and VITEK2 automated antimicrobial susceptibility test systems for extended-spectrum β--lactamase detection in Escherichia coli and Klebsiella species clinical isolates. Diagnostic Microbiology and Infectious Disease, 45, 29–34.

    Article  PubMed  Google Scholar 

  • Swayne, R. L., Ludlam, H. A., Shet, V. G., Woodford, N., & Curran, M. D. (2011). Real-time TaqMan PCR for rapid detection of genes encoding five types of non-metallo-(class A and D) carbapenemases in Enterobacteriaceae. International Journal of Antimicrobial Agents, 38, 35–38.

    Article  CAS  PubMed  Google Scholar 

  • Toleman, M. A., Bennett, P. M., & Walsh, T. R. (2006). Common regions eg orf 513 and antibiotic resistance: IS 91-like elements evolving complex class 1 integrons. The Journal of Antimicrobial Chemotherapy, 58, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Vedel, G., Belaaouaj, A., Lilly, G., Labia, R., Philippon, A., Nevot, P., & Paul, G. (1992). Clinical isolates of Escherichia coli producing TRI b-lactamases: Novel TEM enzymes conferring resistance to b-lactamase inhibitors. The Journal of Antimicrobial Chemotherapy, 30, 449–462.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., He, T., Han, J., Wang, J., Foley, S. L., Yang, G. Y., et al. (2012). Prevalence of ESBLs and PMQR genes in fecal Escherichia coli isolated from the non-human primates in six zoos in China. Veterinary Microbiology, 159, 53–59.

    Article  CAS  PubMed  Google Scholar 

  • Wayne, P. A. (2009). Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing: Nineteenth Informational Supplement. CLSI document M100-S19.

    Google Scholar 

  • Wiener, J., Quinn, J. P., Bradford, P. A., Goering, R. V., Nathan, C., Bush, K., & Weinstein, R. A. (1999). Multiple antibiotic–resistant Klebsiella and Escherichia coli in nursing homes. Journal of the American Medical Association, 281, 517–523.

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO). (2011). Report on the burden of endemic health care-associated infection worldwide. WHO Library Cataloguing-in-Publication Data.

    Google Scholar 

  • World Health Organization (WHO). (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics.

    Google Scholar 

  • Yan, J. J., Wu, S. M., Tsai, S. H., Wu, J. J., & Su, I. J. (2000). Prevalence of SHV-12 among clinical isolates of Klebsiella pneumoniae producing extended-spectrum β-lactamases and identification of a novel AmpC enzyme (CMY-8) in southern Taiwan. Antimicrobial Agents and Chemotherapy, 44, 1438–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yigit, H., Queenan, A. M., Anderson, G. J., Domenech-Sanchez, A., Biddle, J. W., Steward, C. D., Alberti, S., Bush, K., & Tenover, F. C. (2001). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 45, 1151–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53, 5046–5054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, W. H., & Hu, Z. Q. (2013). Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Critical Reviews in Microbiology, 39, 79–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Sivaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vijayan, A., Sivaraman, G.K., Bachmann, T. (2023). Prevalence of Extended Spectrum Beta Lactamase (ESBL)-Producing E. coli: A Systematic Overview. In: Mothadaka, M.P., Vaiyapuri, M., Rao Badireddy, M., Nagarajrao Ravishankar, C., Bhatia, R., Jena, J. (eds) Handbook on Antimicrobial Resistance. Springer, Singapore. https://doi.org/10.1007/978-981-16-9723-4_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9723-4_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9723-4

  • Online ISBN: 978-981-16-9723-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics