Skip to main content

A Generic Blockchain-Based Remote Clinical Monitoring Framework Through Wearable Devices to Mitigate the COVID-19 Pandemic

  • Conference paper
  • First Online:
Smart Intelligent Computing and Applications, Volume 2

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 283))

  • 443 Accesses

Abstract

At present, the novel coronavirus is posing a bigger threat to the whole human race. However, adopting emerging technologies like the Internet of Things, artificial intelligence, blockchain technology, and machine learning helps in a greater deal to handle the pandemic effectively. The virus has cost many human lives, and one primary reason could be neglecting the symptoms. The earlier identification of the disease will help in providing immediate medical support. Wearable devices are effective in identifying the coronavirus disease, i.e., COVID-19 cases than the traditional methods. They help in improved tracking and management of the disease. This paper intends to present a framework where the wearable devices associated with the Internet of Things (IoT) collect information from individuals and store it either in a cloud server or to a local fog computing node. Furthermore, the implementation of a decentralized storage system to collect, analyze, and preserve the gathered data among the healthcare professionals is also included in the system. The system takes advantage of blockchain systems to automate smart contracts. The goal of this research is to see how wearable gadgets might help combat COVID-19’s effects by providing efficient methods for identification, monitoring, and collaboration in remote patient monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hirten, R., Danieletto, M., Tomalin, L., Choi, K., Zweig, M., Golden, E., Kaur, S., Helmus, D., Biello, A., Pyzik, R., Charney, A., Miotto, R., Glicksberg, B., Levin, M., Nabeel, I., Aberg, J., Reich, D., Charney, D., Bottinger, E., Keefer, L., Suarez-Farinas, M., Nadkarni, G., Fayad, Z.: Use of physiological data from a wearable device to identify SARS-CoV-2 infection and symptoms and predict COVID-19 diagnosis: observational study. J. Med. Internet Res. 23(2), e26107 (2021). https://www.jmir.org/2021/2/e26107. https://doi.org/10.2196/26107

  2. Angelov, G.V., Nikolakov, D.P., Ruskova, I.N., Gieva, E.E., Spasova, M.L.: Healthcare sensing and monitoring. In: Ganchev, I., Garcia, N., Dobre, C., Mavromoustakis, C., Goleva, R. (eds.) Enhanced Living Environments. Lecture Notes in Computer Science, vol. 11369. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10752-9_10

  3. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J. 7, 7457–7469 (2020)

    Article  Google Scholar 

  4. Kern, Nicky, G. Tröster, B. Schiele, H. Junker and P. Lukowicz. “Wearable Sensing to Annotate Meeting Recordings.” SEMWEB (2002).

    Google Scholar 

  5. Rodgers, M., Pai, V., Conroy, R.: Recent advances in wearable sensors for health monitoring. IEEE Sens. J. 15, 3119–3126 (2015). https://doi.org/10.1109/JSEN.2014.2357257

  6. Fraga-Lamas, P., Fernández-Caramés, T.M., Noceda-Davila, D., Díaz-Bouza, M., Vilar-Montesinos, M., Pena-Agras, J.D., Castedo, L.: Enabling automatic event detection for the pipe workshop of the shipyard 4.0. In: Proceedings of the 2017 56th FITCE Congress, pp. 20–27. Madrid, Spain (2017)

    Google Scholar 

  7. Sathya, A.R., Banik, B.G.: A comprehensive study of blockchain services: future of cryptography. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 11(10) (2020). https://doi.org/10.14569/IJACSA.2020.0111037

  8. Zheng, X., Sun, S., Mukkamala, R.R., Vatrapu, R., Ordieres-Mere, J.: Accelerating health data sharing: a solution based on the internet of things and distributed ledger technologies. J. Med. Internet Res. 21(6), e13583 (2019). [Online]. Available: https://www.jmir.org/2019/6/e13583/

  9. Chattu, V.K., Nanda, A., Chattu, S.K., Kadri, S.M., Knight, A.W.: The emerging role of blockchain technology applications in routine disease surveillance systems to strengthen global health security. Big Data Cogn. Comput. 3(2) (2019). [Online]. Available: https://www.mdpi.com/2504-2289/3/2/25

  10. Griggs, K.N., Ossipova, O., Kohlios, C.P., Baccarini, A.N., Howson, E.A., Haya-jneh, T.: Healthcare blockchain system using smart contracts for secure automatedremote patient monitoring. J. Med. Syst. 42(7), 130 (2018)

    Article  Google Scholar 

  11. Trusted Remote Patient Monitoring using Blockchain-based Smart Contracts. Available from: https://www.researchgate.net/publication/334824084_Trusted_Remote_Patient_Monitoring_using_Blockchain-based_Smart_Contracts. Accessed 29 August 2021

  12. Uddin, M., Salem, A., Nam, I., Nadeem, T.: Wearable sensing framework for human activity monitoring. In: Proceedings of the 2015 Workshop on Wearable Systems and Applications, pp. 21–26 (2015)

    Google Scholar 

  13. Zhu, X., Liu, W., Shuang, S., Nair, M., Li, C.-Z.: Intelligent tattoos, patches, and other wearable biosensors. In: Narayan, R.J. (ed.) Medical Biosensors for Point of Care (poc) Applications, pp. 133–150. Woodhead Publishing, Duxford (2017)

    Chapter  Google Scholar 

  14. Khan, Y., Ostfeld, A.E., Lochner, C.M., Pierre, A., Arias, A.C.: Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28(22), 4373–4395 (2016). https://doi.org/10.1002/adma.201504366. Epub 2016 Feb 12 PMID: 26867696

    Article  Google Scholar 

  15. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15, 1321–1330 (2015). https://doi.org/10.1109/JSEN.2014.2370945

    Article  MATH  Google Scholar 

  16. Zhao, Y., Cheng, S., Yu, X., Xu, H.: Chinese public’s attention to the COVID-19 epidemic on social media: observational descriptive study. J. Med. Internet Res. 22(5), e18825 (2020). https://www.jmir.org/2020/5/e18825. https://doi.org/10.2196/18825

  17. Benreguia, B., Moumen, H., Merzoug, M.: Tracking COVID-19 by tracking infectious trajectories. IEEE Access 8, 145242–145255 (2020)

    Google Scholar 

  18. Nilashi, M., Asadi, S., Abumalloh, R.A., Samad, S., Ibrahim, O.: Intelligent recommender systems in the COVID-19 outbreak: the case of wearable healthcare devices. J. Soft Comput. Decis. Support Syst. 7(4), 8–12 (2020)

    Google Scholar 

  19. Hirten, R.P., Danieletto, M., Tomalin, L., Choi, K.H., Zweig, M., Golden, E., Kaur, S., Helmus, D., Biello, A., Pyzik, R., Charney, A., Miotto, R., Glicksberg, B.S., Levin, M., Nabeel, I., Aberg, J., Reich, D., Charney, D., Bottinger, E.P., Keefer, L., Suarez-Farinas, M., Nadkarni, G.N., Fayad, Z.A.: Physiological data from a wearable device identifies SARS-CoV-2 infection and symptoms and predicts COVID-19 diagnosis: observational study (Preprint). J. Med. Internet Res. (2020). https://doi.org/10.2196/26107

  20. Mateen, A., Javaid, N., Iqbal, S.: Towards energy efficient routing in blockchainbased underwater WSNs via recovering the void holes. MS thesis, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan (2019)

    Google Scholar 

  21. Mohammed, M.N., Syamsudin, H., Al-Zubaidi, S., Sairah, A.K., Ramli, R., Yusuf, E.: Novel COVID-19 detection and diagnosis system using IOT based smart helmet. Int. J. Psychosoc. Rehabil. 24(7) (2020)

    Google Scholar 

  22. Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., Imran, M.: An overview on smart contracts: challenges, advances and platforms. Futur. Gener. Comput. Syst. 105, 475–491 (2020)

    Article  Google Scholar 

  23. Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., Bilbao, J.: Fog computing based efficient IoT scheme for the Industry 4.0. In: Proceedings of the IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia, Spain, 24–26 May 2017

    Google Scholar 

  24. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16. Helsinki, Finland, 17 August 2012

    Google Scholar 

  25. Markakis, E.K., Karras, K., Zotos, N., Sideris, A., Moysiadis, T., Corsaro, A., Alexiou, G., Skianis, C., Mastorakis, G., Mavromoustakis, C.X., et al.: EXEGESIS: extreme edge resource harvesting for a virtualized fog environment. IEEE Commun. Mag. 55, 7 (2017)

    Article  Google Scholar 

  26. Suárez-Albela, M., Fernández-Caramés, T.M., Fraga-Lamas, P., Castedo, L.: A practical evaluation of a high-security energy-efficient gateway for iot fog computing applications (2017)

    Google Scholar 

  27. Journal, H.: Largest healthcare data breaches of 2018. HIPAA J. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Sathya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sathya, A.R., Banik, B.G. (2022). A Generic Blockchain-Based Remote Clinical Monitoring Framework Through Wearable Devices to Mitigate the COVID-19 Pandemic. In: Satapathy, S.C., Bhateja, V., Favorskaya, M.N., Adilakshmi, T. (eds) Smart Intelligent Computing and Applications, Volume 2. Smart Innovation, Systems and Technologies, vol 283. Springer, Singapore. https://doi.org/10.1007/978-981-16-9705-0_42

Download citation

Publish with us

Policies and ethics