Skip to main content

Exosomes: Supramolecular Biomarker Conduit in Cancer

  • Chapter
  • First Online:
Computational Intelligence in Oncology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1016))

  • 628 Accesses

Abstract

Cancer is a complex disease attributed to genetic distortions and cellular and non-cellular host responses. Tumors contain a variety of cell types that interact in a dynamic manner to maintain cancer-specific signaling networks. Extrinsic vesicles (EVs) are formed and retrieved as part of cell communication. Even tumor cells release exosomes, which are “30–100 nm” membrane vesicles that come from endosomes. Parental cells proteins and nucleic acids enrich their repertoire, and intercellular signals are thought to be transmitted by them. DNA and RNA are released into all body fluids as well as protein biomarkers that can be used to identify tumors and therapeutic targets. Patients with cancer may be screened for tumors based on the presence of exosomes secreted by tumor cells. Biomarkers for clinical diagnoses, such as exosomal proteins and microRNAs, are attracting considerable interest. The unique biogenesis of exosomes, their pervasive production by all cell types, and their biological features in liquid biopsy samples have all contributed to a growing interest in exosomes as cancer biomarkers. Cancer ‘prognosis’, ‘diagnosis’ and ‘progression’ may be more comprehensively assessed using these biomarkers, which reflect the heterogeneous biological changes associated with tumor growth. This chapter provides a brief overview of exosomal initiation, function, isolation, and the current roles of computation in oncology in the context of multi-omic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

    Google Scholar 

  2. Li, W., Li, C., Zhou, T., et al. (2017). Role of exosomal proteins in cancer diagnosis. Molecular Cancer, 16(1), 145.

    Article  Google Scholar 

  3. Bu, H., He, D., He, X., & Wang, K. (2019). Exosomes: Isolation, analysis, and applications in cancer detection and therapy. ChemBioChem, 20(4), 451–461.

    Article  Google Scholar 

  4. Thind, A., & Wilson, C. (2016). ExosomalmiRNAs as cancer biomarkers and therapeutic targets. Journal of Extracellular Vesicles, 5, 31292.

    Article  Google Scholar 

  5. Mathieu, M., Martin-Jaular, L., Lavieu, G., & Thery, C. (2019). Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nature Cell Biology, 21(1), 9.

    Article  Google Scholar 

  6. Dakubo, G. D. (2016). Advanced technologies for body fluid biomarker analyses. In G. D. Dakubo (Ed.), Cancer biomarkers in body fluids: Principles (pp. 55–74). Springer Nature.

    Chapter  Google Scholar 

  7. Ruivo, C. F., Adem, B., Silva, M., & Melo, S. A. (2017). The biology of cancer exosomes: Insights and new perspectives. Cancer Research, 77, 6480–6488.

    Article  Google Scholar 

  8. SkotlandT, S. K., & Llorente, A. (2017). Lipids in exosomes: Current knowledge and the way forward. Progress in Lipid Research, 66, 30–41.

    Article  Google Scholar 

  9. Denzer, K., Kleijmeer, M. J., Heijnen, H. F. G., Stoorvogel, W., & Geuze, H. J. (2000). Exosome: From internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science, 113(19), 3365–3374.

    Article  Google Scholar 

  10. Clayton, A., TurkesA, N. H., Mason, M. D., & Tabi, Z. (2005). Induction of heat shock proteins in B-cell exosomes. Journal of Cell Science, 118(16), 3631–3638.

    Article  Google Scholar 

  11. LespagnolA, D. D., Beekman, C., et al. (2008). Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death and Differentiation, 15(11), 1723–1733.

    Article  Google Scholar 

  12. Sun, D., Zhuang, X., Zhang, S., et al. (2013). Exosomes are endogenous nanoparticles that can deliver biological information between cells. Advanced Drug Delivery Reviews, 65(3), 342–347.

    Article  Google Scholar 

  13. Olver, C., & Vidal, M. (2007). Proteomic analysis of secreted exosomes. Sub Cell Biochemistry, 43, 99–131.

    Google Scholar 

  14. Huotari, J., & Helenius, A. (2011). Endosome maturation. EMBO Journal, 30(17), 3481–3500.

    Article  Google Scholar 

  15. Del Conte-Zerial, P., Brusch, L., Rink, J. C., Collinet, C., Kalaidzidis, Y., Zerial, M., et al. (2008). Membrane identity and GTPase cascades regulated by toggle and cut-out switches. Molecular Systems Biology, 4, 206.

    Article  Google Scholar 

  16. Mukherjee, S., & Maxfield, F. R. (2004). Membrane domains. Annual Review Cell Development Biology, 20, 839–866.

    Article  Google Scholar 

  17. Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., et al. (2008). Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319(5867), 1244–1247.

    Article  Google Scholar 

  18. Savina, A., Fader, C. M., Damiani, M. T., & Colombo, M. I. (2005). Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic, 6, 131–143.

    Article  Google Scholar 

  19. Ostrowski, M., Carmo, N. B., Krumeich, S., Fanget, I., Raposo, G., Savina, A., et al. (2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology, 12, 19–30.

    Article  Google Scholar 

  20. Schorey, J. S., & Bhatnagar, S. (2008). Exosome function: From tumor immunology to pathogen biology. Traffic, 9(6), 871–881.

    Article  Google Scholar 

  21. Kharaziha, P., Ceder, S., Li, Q., & Panaretakis, T. (2012). Tumor cell-derived exosomes: A message in a bottle. Biochimica et BiophysicaActa: Reviews on Cancer, 1826(1), 103–111.

    Google Scholar 

  22. Pegtel, D. M., van de Garde, M. D. B., & Middeldorp, J. M. (2011). Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion. Biochimica et Biophysica Acta, 1809(11–12), 715–721.

    Article  Google Scholar 

  23. Markopoulos, G. S., Roupakia, E., Tokamani, M., et al. (2017). A step-by-step microRNA guide to cancer development and metastasis. Cellular Oncology, 40(4), 303–339.

    Article  Google Scholar 

  24. van Niel, G., D’angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 19, 213.

    Article  Google Scholar 

  25. Zhou, W., Fong, M. Y., Min, Y., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25, 501–515.

    Article  Google Scholar 

  26. Wang, N., & Xie, L. (2017). Diagnostic and therapeutic applications of tumor-associated exosomes. Precision Radiation Oncology, 1, 34–39.

    Article  Google Scholar 

  27. RekkerK, S. M., Roost, A. M., et al. (2014). Comparison of serum exosome isolation methods for microRNA profiling. Clinical Biochemistry, 47(1–2), 135–138.

    Article  Google Scholar 

  28. Chen, J. F., Mandel, E. M., Thomson, J. M., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38(2), 228–233.

    Article  Google Scholar 

  29. Lee, K., Fraser, K., Ghaddar, B., et al. (2018). Multiplexed profiling of single extracellular vesicles. ACS Nano, 12(1), 494–503.

    Article  Google Scholar 

  30. Momen-Heravi, F., Getting, S. J., & Moschos, S. A. (2018). Extracellular vesicles and their nucleic acids for biomarker discovery. Pharmacology and Therapeutics, 192, 170–187.

    Article  Google Scholar 

  31. Martial, S. (2016). Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. American Journal of Physiology Cell Physiology, 310, C710–C727.

    Article  Google Scholar 

  32. Rahbarghazi, R., Jabbari, N., Sani, N. A., et al. (2019). Tumor-derived extracellular vesicles: Reliable tools for cancer diagnosis and clinical applications. Cell Communication and Signaling: CCS, 17(1), 73.

    Article  Google Scholar 

  33. Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R. (2019). Targeting tumor microenvironment for cancer therapy. International Journal of Molecular Science, 20, 840.

    Article  Google Scholar 

  34. Zhao, H., et al. (2016). Tumor microenvironment derived exosomespleiotropically modulate cancer cell metabolism. eLife, 5, e10250.

    Article  Google Scholar 

  35. Whiteside, T. L. (2016). Tumor-derived exosomes and their role in cancer progression. Advances in Clinical Chemistry, 74, 103–141.

    Article  Google Scholar 

  36. HaoY, B. D., & Ten Dijke, P. (2019). TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. International Journal of Molecular Science, 20, 27–67.

    Google Scholar 

  37. Wang, J., Zheng, Y., & Zhao, M. (2016). Exosome-based cancer therapy: Implication for cancer. Stem Cells Front Pharmacology, 7, 533.

    Google Scholar 

  38. Sharma, A. (2018). Role of stem cell derived exosomes in tumor biology. International Journal of Cancer, 142, 1086–1092.

    Article  Google Scholar 

  39. Ti, D., HaoH, Fu. X., & Han, W. (2016). Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Science China Life Science, 59, 1305–1312.

    Article  Google Scholar 

  40. Yong, S. B., et al. (2019). Non-viral nano-immunotherapeutics targeting tumor microenvironmental immune cells. Biomaterials, 219, 119401.

    Article  Google Scholar 

  41. Ramos-Zayas, Y., et al. (2019). Immunotherapy for the treatment of canine transmissible venereal tumor based in dendritic cells pulsed with tumoralexosomes. Immunopharmacology and Immunotoxicology, 41, 48–54.

    Article  Google Scholar 

  42. Muller, L., et al. (2017). Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology, 6, e1261243.

    Article  Google Scholar 

  43. Sakai, C., & Nishikawa, H. (2018). Immunosuppressive environment in tumors. Gan Kagaku Ryoho, 45, 222–226.

    Google Scholar 

  44. Yoshioka, Y., Konishi, Y., Kosaka, N., Katsuda, T., Kato, T., & Ochiya, T. (2013). Comparative marker analysis of extracellular vesicles in different human cancer types. Journal of Extracellar Vesicles, 2, 14–23.

    Google Scholar 

  45. Welker, M. W., Reichert, D., Susser, S., et al. (2012). Soluble serum CD81 is elevated in patients with chronic hepatitis c and correlates with alanine aminotransferase serum activity. PLoS ONE, 7, e30796.

    Article  Google Scholar 

  46. Peinado, H., Aleckovic, M., Lavotshkin, S., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a prometastatic phenotype through MET. Nature Medicine, 18, 883–891.

    Article  Google Scholar 

  47. Khan, S., Jutzy, J. M. S., Valenzuela, M. M. A., et al. (2012). Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS ONE, 7, e46737.

    Article  Google Scholar 

  48. Skog, J., Wurdinger, T., van Rijn, S., et al. (2008). Glioblastomamicrovesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10, 1470–1476.

    Article  Google Scholar 

  49. Li, J., Sherman-Baust, C. A., Tsai-Turton, M., Bristow, R. E., Roden, R. B., & Morin, P. J. (2009). Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer, 9, 244.

    Article  Google Scholar 

  50. Conde-Vancells, J., Rodriguez-Suarez, E., & Gonzalez, E., et al. (2010). Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples. PROTEOMICS—ClinAppl, 4, 416–425.

    Google Scholar 

  51. Smalley, D. M., Sheman, N. E., Nelson, K., & Theodorescu, D. (2008). Isolation and identification of potential urinary microparticle biomarkers of bladder cancer. Journal of Proteome Research, 7, 2088–2096.

    Article  Google Scholar 

  52. Nilsson, J., Skog, J., Nordstrand, A., et al. (2009). Prostate cancer-derived urine exosomes: A novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100, 1603–1607.

    Article  Google Scholar 

  53. Zhou, H., Cheruvanky, A., Hu, X., et al. (2008). Urinary exosomal transcription factors, a new class of biomarkers for renal disease. Kidney International, 74, 613–621.

    Article  Google Scholar 

  54. ValadiH, E. K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cell. Nature Cell Biology, 9(6), 654–659.

    Article  Google Scholar 

  55. Hunter, M. P., Ismail, N., Zhang, X., et al. (2008). Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE, 3(11), e3694.

    Article  Google Scholar 

  56. Mitchell, P. S., Parkin, R. K., Kroh, E. M., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.

    Article  Google Scholar 

  57. Tanaka, Y., Kamohara, H., Kinoshita, K., et al. (2013). Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer, 119, 1159–1167.

    Article  Google Scholar 

  58. Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110, 13–21.

    Article  Google Scholar 

  59. Corcoran, C., Friel, A. M., Duffy, M. J., Crown, J., & O’Driscoll, L. (2011). Intracellular and extracellular microRNAs in breast cancer. Clinical Chemistry, 57, 18–32.

    Article  Google Scholar 

  60. Silva, J., Garcıa, V., Zaballos, A., et al. (2011). Vesicle-related microRNAs in plasma of non-small cell lung cancer patients and correlation with survival. European Respiratory Journal, 37, 617–623.

    Article  Google Scholar 

  61. Ohshima, K., Inoue, K., Fujiwara, A., et al. (2010). Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE, 5, e13247.

    Article  Google Scholar 

  62. Hong, B. S., Cho, J. H., Kim, H., Choi, E. J., Rho, S., Kim, J., Kim, J. H., Choi, D. S., Kim, Y. K., Hwang, D., & Gho, Y. S. (2009). Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics, 10, 556.

    Article  Google Scholar 

  63. Lv, L. L., Cao, Y. H., Pan, M. M., et al. (2014). CD2AP mRNA in urinary exosome as biomarker of kidney disease. Clinica Chimica Acta, 428, 26–31.

    Article  Google Scholar 

  64. Palanisamy, V., Sharma, S., Deshpande, A., Zhou, H., Gimzewski, J., & Wong, D. T. (2010). Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE, 5, e8577.

    Article  Google Scholar 

  65. Lau, C., Kim, Y., Chia, D., et al. (2013). Role of pancreatic cancer-derived exosomes in salivary biomarker development. Journal of Biological Chemistry, 288, 26888–26897.

    Article  Google Scholar 

  66. Davis-Turak, J., Courtney, S. M., Hazard, E. S., Glen, W. B., da Silveira, W. A., Wesselman, T., et al. (2017). Genomics pipelines and data integration: Challenges and opportunities in the research setting. Expert Review of Molecular Diagnostics, 17, 225–237.

    Article  Google Scholar 

  67. Maintainer, B. P. (2019). Arrays: Using bioconductor for microarray analysis.

    Google Scholar 

  68. Roy, S., Coldren, C., Karunamurthy, A., Kip, N. S., Klee, E. W., Lincoln, S. E., et al. (2018). Standards and guidelines for validating next-generation sequencing bioinformatics pipelines. Journal of Molecular Diagnostics, 20, 4–27.

    Article  Google Scholar 

  69. Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128, 669–681.

    Article  Google Scholar 

  70. Hansen, K. D., Langmead, B., & Irizarry, R. A. (2012). BSmooth: From whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biology, 13, R83.

    Article  Google Scholar 

  71. Buenrostro, J. D., Wu, B., Chang, H. Y., & Greenleaf, W. J. (2015). ATAC-seq: A method for assaying chromatin accessibility genome-wide. Current Protocols in Molecular Biology, 109, 21–29.

    Article  Google Scholar 

  72. Harmston, N., Ing-Simmons, E., Perry, M., Barešic, A., & Lenhard, B. (2015). Genomic interactions: An R/bioconductor package for manipulating and investigating chromatin interaction data. BMC Genomics, 16, 963.

    Article  Google Scholar 

  73. Zhang, H., He, L., & Cai, L. (2018). Transcriptome sequencing: RNA-seq. In T. Huang (Ed.), Computational systems biology (pp. 15–27). Humana Press.

    Chapter  Google Scholar 

  74. Jeong, E., Moon, S. U., Song, M., & Yoon, S. (2017). Transcriptome modeling and phenotypic assays for cancer precision medicine. Archives of Pharmacal Research, 40, 906–914.

    Article  Google Scholar 

  75. Yang, X., Saito, Y., Rao, A., Kim, H. J., Singh, P., Scott, E., et al. (2019). Alignment free filtering for cfNA fusion fragments. Bioinformatics, 35, i225–i232.

    Article  Google Scholar 

  76. Babarinde, I. A., Li, Y., & Hutchins, A. P. (2019). Computational methods for mapping, assembly and quantification for coding and non-coding transcripts. Computer Structure Biotechnology of Journal, 17, 628–637.

    Article  Google Scholar 

  77. Vazquez, A., Kamphorst, J. J., Markert, E. K., Schug, Z. T., Tardito, S., & Gottlieb, E. (2016). Cancer metabolism at a glance. Journal of Cell Science, 129, 3367–3373.

    Article  Google Scholar 

  78. Yang, K., & Han, X. (2016). Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends in Biochemical Sciences, 41, 954–969.

    Article  Google Scholar 

  79. Mohamed, A., Molendijk, J. (2019). Lipidr: Data mining and analysis of lipidomics datasets. R package version 200.

    Google Scholar 

  80. Yakkioui, Y., Temel, Y., Chevet, E., & Negroni, L. (2017). Integrated and quantitative proteomics of human tumors. Methods in Enzymology, 586, 229–246.

    Article  Google Scholar 

  81. Cho, W. C. (2017). Mass spectrometry-based proteomics in cancer research. Expert Review of Proteomics, 14, 725–727.

    Article  Google Scholar 

  82. Cook-Deegan, R., & McGuire, A. L. (2017). Moving beyond Bermuda: Sharing data to build a medical information commons. Genome Research, 27, 897–901.

    Article  Google Scholar 

  83. Jansen, P., van den Berg, L., van Overveld, P., & Boiten, J. W. (2018). Research data stewardship for healthcare professionals. In P. Kubben, M. Dumontier, & A. Dekker (Eds.), Fundamentals of clinical data science (pp. 37–53). Springer.

    Google Scholar 

  84. Grossman, R. L., Heath, A. P., Ferretti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A., et al. (2016). Toward a shared vision for cancer genomic data. New England Journal of Medicine, 375, 1109–1112.

    Article  Google Scholar 

  85. Wani, N., & Raza, K. (2018). Multiple kernel learning approach for medical image analysis. In: Dey, N., Ashour, A., Shi, F., Balas, E. (Eds.), Soft computing based medical image analysis, (pp. 31–47). Elsevier. https://doi.org/10.1016/B978-0-12-813087-2.00002-6

  86. Gore, J. C. (2020). Artificial intelligence in medical imaging. Magnetic Resonance Imaging, 68, A1-4.

    Article  Google Scholar 

  87. Rodriguez-Ruiz, A., et al. (2019). Detection of breast cancer with mammography: Effect of an artificial intelligence support system. Radiology, 290, 305–314.

    Article  Google Scholar 

  88. Newswire, P. (2020). QuantX artificial intelligence (AI) breast cancer diagnosis system receives 2020 gold edison award. Available: https://www.prnewswire.com/news-releases/quantx-artificial-intelligenceai-breast-cancer-diagnosis-system-receives-2020-gold-edison-award301027112.html

  89. Bera, K., Schalper, K. A., Rimm, D. L., Velcheti, V., & Madabhushi, A. (2019). Artificial intelligence in digital pathology—New tools for diagnosis and precision oncology. Nature Reviews Clinical Oncology, 16, 703–715.

    Article  Google Scholar 

  90. Beck, A. H., et al. (2011). Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science Translational of Medicine, 108, ra113

    Google Scholar 

  91. Nagpal, K., et al. (2019). Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. NPJ Digital Medicine, 2, 48.

    Article  Google Scholar 

  92. Harbeck, N., et al. (2019). Breast cancer. Nature Reviews Disease Primers, 5, 66.

    Article  Google Scholar 

  93. Pokhriyal, R., Hariprasad, R., Kumar, L., & Hariprasad, H. (2019). Chemotherapy resistance in advanced ovarian cancer patient. Biomark Cancer, 11, 1179299X19860815.

    Google Scholar 

  94. Eswaran, J., et al. (2013). RNA sequencing of cancer reveals novel splicing alterations. Science and Reports, 3, 1689.

    Article  Google Scholar 

  95. Vellido, A., Biganzoli, E., Lisboa, P. J. (23–25 April 2008). Machine learning in cancer research: implications for personalised medicine. At: The 16th European symposium on artificial neural networks ESANN.

    Google Scholar 

  96. Sun, Y., Goodison, S., Li, J., Liu, L., & Farmerie, W. (2007). Improved breast cancer prognosis through the combination of clinical and genetic markers. Bioinformatics, 23, 30–37.

    Article  Google Scholar 

  97. Zhang, X., Wang, B., Zhang, X. S., Li, Z. M., Guan, Z. Z., & Jiang, W. Q. (2007). Serum diagnosis of diffuse large B-cell lymphomas and further identification of response to therapy using SELDITOF-MS and tree analysis patterning. BMC Cancer, 7, 235.

    Article  Google Scholar 

  98. Garcia-Bilbao, A., Armananzas, R., Ispizua, Z., et al. (2012). Identification of a biomarker panel for colorectal cancer diagnosis. BMC Cancer, 12, 43.

    Article  Google Scholar 

  99. Bigbee, W. L., Gopalakrishnan, V., Weissfeld, J. L., et al. (2012). A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from highrisk individuals found to be cancer-free by CT screening. Journal of Thoracic Oncology, 7, 698–708.

    Article  Google Scholar 

  100. Lanara, Z., Giannopoulou, E., & Fullen, M. et al. (2013). Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection, (pp. 7–14). Hum. Genomics.

    Google Scholar 

  101. Zhao, D., & Weng, C. (201). Combining PubMed knowledge and EHR data to develop a weighted bayesian network for pancreatic cancer prediction. Journal Biomedicine Informatics 44, 859–868.

    Google Scholar 

  102. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. Journal of Biological Chemistry, 288, 10093–10099.

    Article  Google Scholar 

  103. Sento, S., Sasabe, E., & Yamamoto, T. (2016). Application of a persistent heparin treatment inhibits the malignant potential of oral squamous carcinoma cells induced by tumor cell-derived exosomes. PLoS ONE, 11, e0148454.

    Article  Google Scholar 

  104. Nishida-Aoki, N., Tominaga, N., Takeshita, F., Sonoda, H., Yoshioka, Y., & Ochiya, T. (2017). Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Molecular Theraphy, 25, 181–191.

    Article  Google Scholar 

  105. de la Fuente, A., Alonso-Alconada, L., Costa, C., Cueva, J., Garcia-Caballero, T., LopezLopez, R., & Abal, M. (2015). M-trap: Exosome-based capture of tumor cells as a new technology in peritoneal metastasis. Journal of National Cancer Institute, 107, djv184.

    Google Scholar 

  106. Zhang, Y., Yang, P., & Wang, X. F. (2014). Microenvironmental regulation of cancer metastasis by miRNAs. Trends in Cell Biology, 24, 153–160.

    Article  Google Scholar 

  107. Clancy, C., Khan, S., Glynn, C. L., Holian, E., Dockery, P., Lalor, P., Brown, J. A., Joyce, M. R., Kerin, M. J., & Dwyer, R. M. (2016). Screening of exosomal microRNAs from colorectal cancer cells. Cancer Biomarkers, 17, 427–435.

    Article  Google Scholar 

  108. Zaharie, F., Muresan, M. S., Petrushev, B., Berce, C., Gafencu, G. A., Selicean, S., Jurj, A., Cojocneanu-Petric, R., Lisencu, C. I., Pop, L. A., et al. (2015). Exosome-carried microRNA375 inhibits cell progression and dissemination via Bcl-2 blocking in colon cancer. Journal of Gastrointestinal and Liver Diseases, 24, 435–443.

    Article  Google Scholar 

  109. Dos Anjos, P. B., da Luz Andres Cordero, F., Socorro Faria, S., Peixoto Ferreira de Souza, L., Cristina Brigido Tavares, P., Alonso Goulart, V., Fontes, W., Ricardo Goulart, L., & Jose Barbosa Silva, M. (2017). The multifaceted role of extracellular vesicles in metastasis: Priming the soil for seeding. International Journal of Cancer, 140, 2397–407.

    Google Scholar 

  110. Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., & Nie, G. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35, 2383–2390.

    Article  Google Scholar 

  111. Mizrak, A., Bolukbasi, M. F., Ozdener, G. B., Brenner, G. J., Madlener, S., Erkan, E. P., Strobel, T., Breakefield, X. O., & Saydam, O. (2013). Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Molecular Theraphy, 21, 101–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmeet Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, M., Sodhi, H.S. (2022). Exosomes: Supramolecular Biomarker Conduit in Cancer. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_18

Download citation

Publish with us

Policies and ethics