Skip to main content

Predicting the Cancer Recurrence Using Artificial Neural Networks

  • Chapter
  • First Online:
Computational Intelligence in Oncology

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1016))

Abstract

In the early 1900s, multiple significant studies showed high incidences of cancer. During this period, study with infectious agents produced only modest results which looked irrelevant to people. Then, in the 1980s, groundbreaking evidence that a number of viruses can cause cancer in people began to emerge. Machine learning and deep learning techniques have been widely employed in cancer detection and classification that include support vector machines (SVMs), artificial neural networks (ANNs), and conventional neural networks (CNNs). The recurrence of cancer is also an important issue that needs to be predicted with significant accuracy. This chapter reviews current state-of-the-art of ANNs model in the prediction of cancer recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donachie, W. D., Begg, K. J., & Vicente, M. (1976). Cell length, cell growth and cell division. Nature, 264(5584), 328–333.

    Article  Google Scholar 

  2. Cairns, R. A., Harris, I. S., & Mak, T. W. (2011). Regulation of cancer cell metabolism. Nature Reviews Cancer, 11(2), 85–95.

    Article  Google Scholar 

  3. Jemal, A., Bray, F., Center, M. M., Ferlay, J.,Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.

    Google Scholar 

  4. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., & Thun, M. J. (2009). Cancer statistics. CA: A Cancer Journal for Clinicians, 59(4).

    Google Scholar 

  5. Warnakulasuriya, S., & Greenspan, J. S. (Eds.) (2020). Textbook of oral cancer: prevention, diagnosis and management. Springer Nature.

    Google Scholar 

  6. Moschini, M., Sharma, V., Zattoni, F., Quevedo, J. F., Davis, B. J., Kwon, E., & Karnes, R. J.: Natural history of clinical recurrence patterns of lymph node–positive prostate cancer after radical prostatectomy. European Urology, 69(1), 135–142.

    Google Scholar 

  7. Burki, T. K. (2016). Predicting lung cancer prognosis using machine learning. The Lancet Oncology, 17(10), e421.

    Google Scholar 

  8. Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567.

    Article  Google Scholar 

  9. Rish, I. (2001). An empirical study of the naive Bayes classifier. In IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (Vol. 3, No. 22, pp. 41–46).

    Google Scholar 

  10. Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics 21(3), 660–674.

    Google Scholar 

  11. Sarle, W. S. (1994). Neural networks and statistical models.

    Google Scholar 

  12. Yegnanarayana, B. (2009). Artificial neural networks. PHI Learning Pvt. Ltd.

    Google Scholar 

  13. MmmBakr, M. A. H. A., Al-Attar, H. M., Mahra, N. K., & Abu-Naser, S. S. (2020). Breast cancer prediction using JNN. International Journal of Academic Information Systems Research (IJAISR), 4(10).

    Google Scholar 

  14. Setiono, R. (2000). Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine, 18(3), 205–219.

    Article  Google Scholar 

  15. Ghoniem, R. M., Algarni, A. D., Refky, B., & Ewees, A. A. (2021). Multi-modal evolutionary deep learning model for ovarian cancer diagnosis. Symmetry, 13(4), 643.

    Article  Google Scholar 

  16. Kumar, N., Verma, R., Arora, A., Kumar, A., Gupta, S., Sethi, A., & Gann, P. H. (2017, March). Convolutional neural networks for prostate cancer recurrence prediction. In Medical Imaging 2017: Digital Pathology (Vol. 10140, p. 101400H). International Society for Optics and Photonics.

    Google Scholar 

  17. Shiva Shankar, R., Murthy, K. V. S., & Someswara Rao, C. (2020). Breast cancer disease prediction with recurrent neural networks (RNN). International Journal of Industrial Engineering & Production Research, 31(3), 379–386.

    Google Scholar 

  18. Pandey, B., Jain, T., Kothari, V., & Grover, T. (2012). Evolutionary modular neural network approach for breast cancer diagnosis. International Journal of Computer Science Issues, 9(1), 219–225.

    Google Scholar 

  19. Qazi, S., Iqbal, N., & Raza, K. (2021). Artificial intelligence in medicine (AIM): Machine learning in cancer diagnosis (pp. 103–126). De Gruyter.

    Google Scholar 

  20. Sandhu, I. K., Nair, M., Shukla, H., & Sandhu, S. S. (2015). Artificial neural network: As emerging diagnostic tool for breast cancer. International Journal of Pharmacy and Biological Sciences, 5(3), 29–41.

    Google Scholar 

  21. Jafari-Marandi, R., Davarzani, S., Gharibdousti, M. S., & Smith, B. K. (2018). An optimum ANN-based breast cancer diagnosis: Bridging gaps between ANN learning and decision-making goals. Applied Soft Computing, 1(72), 108–120.

    Article  Google Scholar 

  22. Ortiz-Rodriguez, J. M., Guerrero-Mendez, C., Martinez-Blanco, M. D., Castro-Tapia, S., Moreno-Lucio, M., Jaramillo-Martinez, R., & Garcia, J. A. (2018). Breast cancer detection by means of artificial neural networks. Advanced Applications for Artificial Neural Networks, 28, 161–179.

    Google Scholar 

  23. Mehdy, M. M., Ng, P. Y., Shair, E. F., Saleh, N. I., & Gomes, C. (2017). Artificial neural networks in image processing for early detection of breast cancer. Computational and Mathematical Methods in Medicine, 3, 2017.

    Google Scholar 

  24. Sepandi, M., Taghdir, M., Rezaianzadeh, A., & Rahimikazerooni, S. (2018). Assessing breast cancer risk with an artificial neural network. Asian Pacific Journal of Cancer Prevention: APJCP, 19(4), 1017.

    Google Scholar 

  25. Zhang, Y., Qazi, S., & Raza, K. (2021). Differential expression analysis in ovarian cancer: A functional genomics and systems biology approach. Saudi Journal of Biological Sciences, 28(7), 4069–4081.

    Article  Google Scholar 

  26. Qazi, S., & Raza, K. (2021). Phytochemicals from Ayurvedic plants as potential medicaments for ovarian cancer: An in silico analysis. Journal of Molecular Modeling, 27, 114. https://doi.org/10.1007/s00894-021-04736-x

    Article  Google Scholar 

  27. Qazi, S., Sharma, A., & Raza, K. (2021). The role of epigenetic changes in ovarian cancer: A review. Indian J Gynecol Oncolog, 19, 27. https://doi.org/10.1007/s40944-021-00505-z

    Article  Google Scholar 

  28. Kappen, H. J., & Neijt, J. P. (1993). Neural network analysis to predict treatment outcome. Annals of Oncology, 1(4), S31–S34.

    Article  Google Scholar 

  29. Kweik, O. M. A., Hamid, M. A. A., Sheqlieh, S. O., Abu-Nasser, B. S., & Abu-Naser, S. S. (2020). Artificial neural network for lung cancer detection. International Journal of Academic Engineering Research (IJAER)4(11).

    Google Scholar 

  30. Bertolaccini, L., Solli, P., Pardolesi, A., & Pasini, A. (2017). An overview of the use of artificial neural networks in lung cancer research. Journal of Thoracic Disease, 9(4), 924.

    Article  Google Scholar 

  31. Nasser, I. M., & Abu-Naser, S. S. (2019). Lung cancer detection using artificial neural network. International Journal of Engineering and Information Systems (IJEAIS), 3(3), 17–23.

    Google Scholar 

  32. Taher, F., & Sammouda, R. (2011). Lung cancer detection by using artificial neural network and fuzzy clustering methods. In 2011 IEEE GCC Conference and Exhibition (GCC), 2011 Feb 19 (pp. 295–298). IEEE.

    Google Scholar 

  33. Hart, G. R., Roffman, D. A., Decker, R., & Deng, J. (2018). A multi-parameterized artificial neural network for lung cancer risk prediction. PLoS One, 13(10), e0205264.

    Google Scholar 

  34. Adetiba, E., & Olugbara, O. O. (2015). Lung cancer prediction using neural network ensemble with histogram of oriented gradient genomic features. The Scientific World Journal, 1, 2015.

    Google Scholar 

  35. Qureshi, K. N., Naguib, R. N. G., Hamdy, F. C., Neal, D. E., & Kilian Mellon, J. (2000). Neural network analysis of clinicopathological and molecular markers in bladder cancer. The Journal of Urology, 163(2), 630–633.

    Google Scholar 

  36. Catto, J. W. F., Linkens, D. A., Abbod, M. F., Chen, M., Burton, J. L., Feeley, K. M., & Hamdy, F. C. (2003). Artificial intelligence in predicting bladder cancer outcome: a comparison of neuro-fuzzy modeling and artificial neural networks. Clinical Cancer Research, 9(11), 4172–4177.

    Google Scholar 

  37. Lundin, J., Lundin, M., Holli, K., Kataja, V., Elomaa, L., Pylkkänen, L., Turpeenniemi-Hujanen, T., & Joensuu, H. (2001). Omission of histologic grading from clinical decision making may result in overuse of adjuvant therapies in breast cancer: Results from a nationwide study. Journal of Clinical Oncology, 19(1), 28–36.

    Google Scholar 

  38. Jerez-Aragonés, J. M., Gómez-Ruiz, J. A., Ramos-Jiménez, G., Muñoz-Pérez, J., & Alba-Conejo, E. (2003). A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine, 27(1), 45–63.

    Article  Google Scholar 

  39. Kim, W., Kim, K. S., Lee, J. E., Noh, D.-Y., Kim, S.-W., Jung, Y. S., Park, M. Y., & Park, R. W.(2012). Development of novel breast cancer recurrence prediction model using support vector machine. Journal of Breast Cancer, 15(2), 230–238.

    Google Scholar 

  40. Tadayyon, H., Gangeh, M., Sannachi, L., Trudeau, M., Pritchard, K., Ghandi, S., Eisen, A., et al. (2019). A priori prediction of breast tumour response to chemotherapy using quantitative ultrasound imaging and artificial neural networks. Oncotarget, 10(39), 3910.

    Google Scholar 

  41. FH, T., Chu, C. Y. W., & Cheung, E. Y. W. (2021). Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach. BJR|Open 3 (2021), 20200073.

    Google Scholar 

  42. Rodriguez-Luna, H., Vargas, H. E., Byrne, T., & Rakela, J. (2005). Artificial neural network and tissue genotyping of hepatocellular carcinoma in liver-transplant recipients: Prediction of recurrence. Transplantation, 79(12), 1737–1740.

    Article  Google Scholar 

  43. Chen, Y.-C., Chang, Y.-C., Ke, W.-C., & Chiu, H.-W. (2015). Cancer adjuvant chemotherapy strategic classification by artificial neural network with gene expression data: An example for non-small cell lung cancer. Journal of Biomedical Informatics, 56, 1–7.

    Article  Google Scholar 

  44. Alabi, R. O., Elmusrati, M., Sawazaki-Calone, I., Kowalski, L. P., Haglund, C., Coletta, R. D., Mäkitie, A. A., Salo, T., Leivo, I., & Almangush, A. (2019). Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: A web-based prognostic tool. VirchowsArchiv, 475(4), 489–497.

    Google Scholar 

  45. Snow, P. B., Brandt, J. M., & Larry Williams, R. (2001). Neural network analysis of the prediction of cancer recurrence following debulking laparotomy and chemotherapy in stages III and IV ovarian cancer. Molecular Urology, 5(4), 171–174.

    Google Scholar 

  46. Wang, S., Liu, Z., Rong, Y., Zhou, B., Bai, Y., Wei, W., Wang, M., Guo, Y., & Tian, J. (2019). Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiotherapy and Oncology, 132, 171–177.

    Google Scholar 

  47. Mattfeldt, T., Kestler, H. A., Hautmann, R., & Gottfried, H. W. (1999). Prediction of prostatic cancer progression after radical prostatectomy using artificial neural networks: A feasibility study. BJU International, 84, 316–323.

    Article  Google Scholar 

  48. Han, M., Snow, P. B., Epstein, J. I., Chan, T. Y., Jones, K. A., Walsh, P. C., & Partin, A. W. (2000). A neural network predicts progression for men with Gleason score 3+ 4 versus 4+ 3 tumors after radical prostatectomy. Urology, 56(6), 994–999.

    Article  Google Scholar 

  49. Ziada, A. M., Lisle, T. C., Snow, P. B., Levine, R. F., Miller, G., & David Crawford, E. (2001). Impact of different variables on the outcome of patients with clinically confined prostate carcinoma: prediction of pathologic stage and biochemical failure using an artificial neural network. Cancer, 91(8), Suppl, 1653–1660.

    Google Scholar 

  50. Hou, Q., Bing, Z.-T., Hu, C., Li, M.-Y., Yang, K.-H., Mo, Z., Xie , X.-W., et al. (2018). RankProd combined with genetic algorithm optimized artificial neural network establishes a diagnostic and prognostic prediction model that revealed C1QTNF3 as a biomarker for prostate cancer. EBioMedicine, 32, 234–244.

    Google Scholar 

  51. Damiani, G., Grossi, E., Berti, E., Conic, R. R. Z., Radhakrishna, U., Pacifico, A., Bragazzi, N. L., Piccinno, R., & Linder, D. (2020). Artificial neural networks allow response prediction in squamous cell carcinoma of the scalp treated with radiotherapy. Journal of the European Academy of Dermatology and Venereology, 34(6), 1369–1373.

    Article  Google Scholar 

  52. Buchner, A., May, M., Burger, M., Bolenz, C., Herrmann, E., Fritsche, H.-M., Ellinger, J., et al. (2013). Prediction of outcome in patients with urothelial carcinoma of the bladder following radical cystectomy using artificial neural networks. European Journal of Surgical Oncology (EJSO,) 39(4), 372–379.

    Google Scholar 

  53. Martins, A., Augusto, B., De Bulhões, G. F., Norat Cavalcanti, I., Martins, M. M., de Oliveira, P. G., & Martins, A. M. A. (2019). Biomarkers in colorectal cancer: the role of translational proteomics research. Frontiers in Oncology 9, 1284.

    Google Scholar 

  54. Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144–153.

    Article  Google Scholar 

  55. Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest?. In International Workshop on Machine Learning and Data Mining in Pattern Recognition (pp. 154–168). Springer.

    Google Scholar 

  56. Ahmad, M. W., Mourshed, M., & Rezgui, Y. (2017). Trees vs neurons: Comparison between random forest and ANN for high-resolution prediction of building energy consumption. Energy and Buildings, 147. 77–89.

    Google Scholar 

  57. Raza, K., & Hasan, A. N. (2015). A comprehensive evaluation of machine learning techniques for cancer class prediction based on microarray data. International Journal of Bioinformatics Research and Applications, Inderscience, 11(5), 397–416.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soudy, M., Alam, A., Ola, O. (2022). Predicting the Cancer Recurrence Using Artificial Neural Networks. In: Raza, K. (eds) Computational Intelligence in Oncology. Studies in Computational Intelligence, vol 1016. Springer, Singapore. https://doi.org/10.1007/978-981-16-9221-5_10

Download citation

Publish with us

Policies and ethics