Skip to main content

Machine Learning for Metabolic Networks Modelling: A State-of-the-Art Survey

  • Chapter
  • First Online:
Handbook of Machine Learning Applications for Genomics

Part of the book series: Studies in Big Data ((SBD,volume 103))

  • 550 Accesses

Abstract

This chapter aims to review the machine learning algorithms and models applied for metabolic networks modeling. Metabolic models include structured repositories of information and prediction tools required to support metabolic engineering. This chapter introduces a background overview of various metabolic modeling approaches, including parametric and non-parametric models. In this chapter, we provide an overview of the various machine learning approaches used in metabolic modeling, with a focus on Hidden Markov Models (HMM), Probabilistic Context-Free Grammar (PCFG), and Bayesian Networks (BNs). We then present recent applications of machine learning in the context of metabolic network modeling concluding with a discussion on the limitations of current methods and challenges for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Helmy, M., Smith, D., Selvarajoo, K.: Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab. Eng. Commun. 11, e00149 (2020)

    Google Scholar 

  2. Roy, S.S., Taguchi, Y.H.: Identification of genes associated with altered gene expression and m6A profiles during hypoxia using tensor decomposition based unsupervised feature extraction. Sci. Rep. 11(1), 8909 (2021)

    Google Scholar 

  3. Chen, Y., Nielsen, J.: Mathematical modeling of proteome constraints within metabolism. Curr. Opin. Syst. Biol. 25, 50–56 (2021)

    Google Scholar 

  4. Chopra, C., Sinha, S., Jaroli, S., Shukla, A., Maheshwari, S.: Recurrent neural networks with non-sequential data to predict hospital readmission of diabetic patients. In: Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics [Online]. https://doi.org/10.1145/3155077.3155081

  5. Bose, A., Roy, S.S., Balas, V.E., Samui, P.: Deep Learning for Brain Computer Interfaces. In: Balas, V.E., Roy, S.S., Sharma, D., Samui, P. (eds.) Handbook of Deep Learning Applications, pp. 333–344. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  6. Chagas, B.N.R., Viana, J., Reinhold, O., Lobato, F.M.F., Jacob, A.F.L., Alt, R.: A literature review of the current applications of machine learning and their practical implications. Web Intelligence (2405-6456) 18(1), 69–83 (2020)

    Google Scholar 

  7. Agarwal, A., Jayant, A.: Machine learning and natural language processing in supply chain management: a comprehensive review and future research directions. Int. J. Bus. Insights Transform. 13(1), 3–19 (2019)

    Google Scholar 

  8. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  9. Lawson, C.E., et al.: Machine learning for metabolic engineering: a review. Metab. Eng. 63, 34–60 (2021)

    Google Scholar 

  10. Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., Collins, J.J.: Next-generation machine learning for biological networks. Cell 173(7), 1581–1592 (2018)

    Article  Google Scholar 

  11. Biba, M., Ferilli, S., Di Mauro, N., Basile, T.M.A.: A hybrid symbolic-statistical approach to modeling metabolic networks. In: Knowledge-Based Intelligent Information and Engineering Systems, pp. 132–139. Heidelberg, Berlin (2007)

    Google Scholar 

  12. Suthers, P.F., Foster, C.J., Sarkar, D., Wang, L., Maranas, C.D.: Recent advances in constraint and machine learning-based metabolic modeling by leveraging stoichiometric balances, thermodynamic feasibility and kinetic law formalisms. Metab. Eng. 63, 13–33 (2021)

    Google Scholar 

  13. Lewis, J.E., Kemp, M.L.: Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat. Commun. 12(1), 2700 (2021)

    Google Scholar 

  14. Martino, A., Giuliani, A., Todde, V., Bizzarri, M., Rizzi, A.: Metabolic networks classification and knowledge discovery by information granulation. Comput. Biol. Chem. 84, 107187 (2020)

    Google Scholar 

  15. Zampieri, G., Vijayakumar, S., Yaneske, E., Angione, C.: Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 15(7), e1007084 (2019)

    Google Scholar 

  16. Angione, C.: Human systems biology and metabolic modelling: a review—from disease metabolism to precision medicine. BioMed. Res. Int. 2019, 8304260 (2019)

    Google Scholar 

  17. Cuperlovic-Culf, M.: Machine learning methods for analysis of metabolic data and metabolic pathway modeling. Metabolites 8(1) (2018)

    Google Scholar 

  18. Vijayakumar, S., Conway, M., Lió, P., Angione, C.: Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Brief. Bioinform. 19(6), 1218–1235 (2018)

    Google Scholar 

  19. Plaimas, K., et al.: Machine learning based analyses on metabolic networks supports high-throughput knockout screens. BMC Syst. Biol. 2, 67–67 (2008)

    Article  Google Scholar 

  20. Ahmad, A., et al.: A systematic literature review on using machine learning algorithms for software requirements identification on stack overflow. Secur. Commun. Netw. 1–19 (2020)

    Google Scholar 

  21. Skënduli, M.P., Biba, M., Ceci, M.: Implementing scalable machine learning algorithms for mining big data: a state-of-the-art survey. In: Roy, S.S., Samui, P., Deo, R., Ntalampiras, S. (eds.) Big Data in Engineering Applications, pp. 65–81. Springer, Singapore (2018)

    Google Scholar 

  22. Panigrahi, A., Patra, M.R.: Chapter 6—Network intrusion detection model based on fuzzy-rough classifiers. In: Samui, P., Sekhar, S., Balas, V.E. (eds.) Handbook of Neural Computation, pp. 109–125. Academic Press (2017)

    Google Scholar 

  23. Mitra, S., Roy, S.S., Srinivasan, K.: 6—Classifying CT scan images based on contrast material and age of a person: ConvNets approach. In: Lee, K.C., Roy, S.S., Samui, P., Kumar, V. (eds.) Data Analytics in Biomedical Engineering and Healthcare, pp. 105–118. Academic Press (2021)

    Google Scholar 

  24. Cárdenas-Ovando, R.A., Fernández-Figueroa, E.A., Rueda-Zárate, H.A., Noguez, J., Rangel-Escareño, C.: A feature selection strategy for gene expression time series experiments with hidden Markov models. PLOS One 14(10), e0223183 (2019)

    Google Scholar 

  25. Zeng, Y.: Evaluation of physical education teaching quality in colleges based on the hybrid technology of data mining and hidden Markov model. Int. J. Emerg. Technol. Learn. (iJET) 15(01) (2020)

    Google Scholar 

  26. George, S., Jose, A.: Generalized Poisson hidden Markov Model for overdispersed or underdispersed count data. Revista Colombiana de Estadística 43, 71–82 (2020)

    Article  MathSciNet  Google Scholar 

  27. Violán, C., et al.: Five-year trajectories of multimorbidity patterns in an elderly Mediterranean population using Hidden Markov Models. Sci. Rep. 10(1), 16879 (2020)

    Google Scholar 

  28. Goetz, H., Melendez-Alvarez, J.R., Chen, L., Tian, X.-J.: A plausible accelerating function of intermediate states in cancer metastasis. PLOS Comput. Biol. 16(3), e1007682 (2020)

    Google Scholar 

  29. Ceres, K.M., Schukken, Y.H., Gröhn, Y.T.: Characterizing infectious disease progression through discrete states using hidden Markov models. PLoS One 15(11), e0242683 (2020)

    Google Scholar 

  30. Dyrka, W., Pyzik, M., Coste, F., Talibart, H.: Estimating probabilistic context-free grammars for proteins using contact map constraints. Peer J. 7, e6559–e6559 (2019)

    Article  Google Scholar 

  31. Liao, Y., Zhao, G., Wang, J., Li, S.: Network security situation assessment model based on extended hidden Markov. Math. Probl. Eng. 2020, 1428056 (2020)

    Google Scholar 

  32. Roark, B., Bacchiani, M.: Supervised and unsupervised PCFG adaptation to novel domains. In: Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, vol. 1 [Online]. https://doi.org/10.3115/1073445.1073472

  33. Mohri, M., Roark, B., Probabilistic context-free grammar induction based on structural zeros. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics [Online]. https://doi.org/10.3115/1220835.1220875

  34. Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.: Learning attribute grammars for movement primitive sequencing. Int. J. Robot. Res. 39(1), 21–38 (2019)

    Google Scholar 

  35. Huang, L., Peng, Y., Wang, H., Wu, Z.: PCFG parsing for restricted classical Chinese texts. In: Proceedings of the First SIGHAN Workshop on Chinese Language Processing, vol. 18 [Online]. https://doi.org/10.3115/1118824.1118830

  36. Corazza, A., Satta, G.: Cross-entropy and estimation of probabilistic context-free grammars. In: Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics [Online]. https://doi.org/10.3115/1220835.1220878

  37. Nederhof, M.-J., Satta, G.: Estimation of consistent probabilistic context-free grammars. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics [Online]. https://doi.org/10.3115/1220835.1220879

  38. Becker, A.-K., et al.: From heterogeneous healthcare data to disease-specific biomarker networks: a hierarchical Bayesian network approach. PLoS Comput. Biol. 17(2), e1008735 (2021)

    Google Scholar 

  39. Biba, M.: Integrating Logic and Probability: Algorithmic Improvements in Markov Logic Networks. University of Bari, Bari, Italy (2009)

    Google Scholar 

  40. McLachlan, S., Dube, K., Hitman, G.A., Fenton, N.E., Kyrimi, E.: Bayesian networks in healthcare: distribution by medical condition. Artif. Intell. Med. 107, 101912 (2020)

    Google Scholar 

  41. Sazal, M., Mathee, K., Ruiz-Perez, D., Cickovski, T., Narasimhan, G.: Inferring directional relationships in microbial communities using signed Bayesian networks. BMC Genom. 21(Suppl 6), 663–663 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narasimha Rao Vajjhala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biba, M., Vajjhala, N.R. (2022). Machine Learning for Metabolic Networks Modelling: A State-of-the-Art Survey. In: Roy, S.S., Taguchi, YH. (eds) Handbook of Machine Learning Applications for Genomics. Studies in Big Data, vol 103. Springer, Singapore. https://doi.org/10.1007/978-981-16-9158-4_10

Download citation

Publish with us

Policies and ethics