Skip to main content

Fullerenes in Photovoltaics

  • Reference work entry
  • First Online:
Handbook of Fullerene Science and Technology

Abstract

Fullerenes are among the most widely used n-type organic semiconducting materials and have been extensively investigated in a variety of applications. Fullerene materials have frequently been used in photovoltaic applications thanks to their excellent electrical properties, which include ultrafast photoinduced charge transfer and low reorganization energy. Accordingly, fullerene materials provide superior performance in both organic solar cells (OSCs) and perovskite solar cells (PSCs) despite playing different roles in these two types of cells. To date, fullerene organic photovoltaics have achieved power conversion efficiency (PCE) reaching 21.3%, up from the PCE of 3.2% reported for the first fullerene derivative photovoltaics in 1995. In OSCs, fullerenes are used as electron acceptors and are mixed with an electron donor to fabricate the active layer of the device. Consequently, the energy level and molecular packing of fullerenes are major concerns and frequent subjects of investigation. In PSCs, on the other hand, a perovskite-structured compound is required in the active layer, so fullerenes are used as electron transport materials or dopants rather than as electron acceptors. For these roles in PSCs, attention shifted to electron carrier mobility, interlayer morphology, and passivation effects. This chapter discusses in depth the recent progress of fullerenes in both OSCs and PSCs from a broad perspective, covering the fundamentals of photovoltaics, fullerene materials design, and advanced techniques that have recently been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rabenau T, Simon A, Kremer RK, Sohmen E (1993) The energy gaps of fullerene C60 and C70 determined from the temperature dependent microwave conductivity. Zeitschrift für Physik B Condensed Matter 90(1):69–72. https://doi.org/10.1007/BF01321034

    Article  CAS  Google Scholar 

  2. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26. https://doi.org/10.1002/1616-3028(200102)11:1<15::Aid-adfm15>3.0.Co;2-a

    Article  CAS  Google Scholar 

  3. Hiroshi I, Kiyoshi H, Tsuyoshi A, Masanori A, Seiji T, Tadashi O, Masahiro S, Yoshiteru S (1996) The small reorganization energy of C60 in electron transfer. Chem Phys Lett 263(3):545–550. https://doi.org/10.1016/S0009-2614(96)01244-4

    Article  Google Scholar 

  4. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270(5243):1789. https://doi.org/10.1126/science.270.5243.1789

    Article  CAS  Google Scholar 

  5. Liu K, Chen S, Wu J, Zhang H, Qin M, Lu X, Tu Y, Meng Q, Zhan X (2018) Fullerene derivative anchored SnO2 for high-performance perovskite solar cells. Energy Environ Sci 11(12):3463–3471. https://doi.org/10.1039/C8EE02172D

    Article  CAS  Google Scholar 

  6. Castro E, Murillo J, Fernandez-Delgado O, Echegoyen L (2018) Progress in fullerene-based hybrid perovskite solar cells. J Mater Chem C 6(11):2635–2651. https://doi.org/10.1039/C7TC04302C

    Article  CAS  Google Scholar 

  7. Collavini S, Delgado JL (2018) Fullerenes: the stars of photovoltaics. Sustain Energy Fuels 2(11):2480–2493. https://doi.org/10.1039/c8se00254a

    Article  CAS  Google Scholar 

  8. Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F (2017) The renaissance of fullerenes with perovskite solar cells. Nano Energy 41:84–100. https://doi.org/10.1016/j.nanoen.2017.09.016

    Article  CAS  Google Scholar 

  9. Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067. https://doi.org/10.1002/anie.201102326

    Article  CAS  Google Scholar 

  10. Lo Piano S, Mayumi K (2017) Toward an integrated assessment of the performance of photovoltaic power stations for electricity generation. Appl Energy 186:167–174. https://doi.org/10.1016/j.apenergy.2016.05.102

    Article  Google Scholar 

  11. Fagan PJ, Calabrese JC, Malone B (1991) The chemical nature of buckminsterfullerene (C60) and the characterization of a platinum derivative. Science 252(5009):1160. https://doi.org/10.1126/science.252.5009.1160

    Article  CAS  Google Scholar 

  12. Potscavage WJ, Sharma A, Kippelen B (2009) Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc Chem Res 42(11):1758–1767. https://doi.org/10.1021/ar900139v

    Article  CAS  PubMed  Google Scholar 

  13. He Y, Chen H-Y, Hou J, Li Y (2010) Indene−C60 Bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132(4):1377–1382. https://doi.org/10.1021/ja908602j

    Article  CAS  PubMed  Google Scholar 

  14. Matsuo Y, Kawai J, Inada H, Nakagawa T, Ota H, Otsubo S, Nakamura E (2013) Addition of dihydromethano group to fullerenes to improve the performance of bulk heterojunction organic solar cells. Adv Mater 25(43):6266–6269. https://doi.org/10.1002/adma.201302607

    Article  CAS  PubMed  Google Scholar 

  15. He D, Du X, Xiao Z, Ding L (2014) Methanofullerenes, C60(CH2)n (n = 1, 2, 3), as building blocks for high-performance acceptors used in organic solar cells. Org Lett 16(2):612–615. https://doi.org/10.1021/ol4035275

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Cai J, Cai F, Yan Y, Yi H, Gurney RS, Liu D, Iraqi A, Wang T (2018) Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy 44:155–163. https://doi.org/10.1016/j.nanoen.2017.12.005

    Article  CAS  Google Scholar 

  17. Kroto HW (1987) The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70. Nature 329(6139):529–531. https://doi.org/10.1038/329529a0

    Article  CAS  Google Scholar 

  18. Troshin PA, Hoppe H, Renz J, Egginger M, Mayorova JY, Goryachev AE, Peregudov AS, Lyubovskaya RN, Gobsch G, Sariciftci NS, Razumov VF (2009) Material solubility-photovoltaic performance relationship in the Design of Novel Fullerene Derivatives for bulk heterojunction solar cells. Adv Funct Mater 19(5):779–788. https://doi.org/10.1002/adfm.200801189

    Article  CAS  Google Scholar 

  19. Mikroyannidis JA, Kabanakis AN, Sharma SS, Sharma GD (2011) A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells. Adv Funct Mater 21(4):746–755. https://doi.org/10.1002/adfm.201001807

    Article  CAS  Google Scholar 

  20. Kim HU, Kim J-H, Kang H, Grimsdale AC, Kim BJ, Yoon SC, Hwang D-H (2014) Naphthalene-, anthracene-, and pyrene-substituted fullerene derivatives as electron acceptors in polymer-based solar cells. ACS Appl Mater Interfaces 6(23):20776–20785. https://doi.org/10.1021/am504939c

    Article  CAS  PubMed  Google Scholar 

  21. Matsumoto K, Hashimoto K, Kamo M, Uetani Y, Hayase S, Kawatsura M, Itoh T (2010) Design of fulleropyrrolidine derivatives as an acceptor molecule in a thin layer organic solar cell. J Mater Chem 20(41):9226–9230. https://doi.org/10.1039/C0JM01565B

    Article  CAS  Google Scholar 

  22. Matsuo Y, Sato Y, Niinomi T, Soga I, Tanaka H, Nakamura E (2009) Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and Silylmethyl[60]fullerene. J Am Chem Soc 131(44):16048–16050. https://doi.org/10.1021/ja9048702

    Article  CAS  PubMed  Google Scholar 

  23. Matsuo Y, Ozu A, Obata N, Fukuda N, Tanaka H, Nakamura E (2012) Deterioration of bulk heterojunction organic photovoltaic devices by a minute amount of oxidized fullerene. Chem Commun 48(32):3878–3880. https://doi.org/10.1039/C2CC30262D

    Article  CAS  Google Scholar 

  24. Zhang Y, Matsuo Y, Li C-Z, Tanaka H, Nakamura E (2011) A scalable synthesis of Methano[60]fullerene and congeners by the oxidative cyclopropanation reaction of silylmethylfullerene. J Am Chem Soc 133(21):8086–8089. https://doi.org/10.1021/ja201267t

    Article  CAS  PubMed  Google Scholar 

  25. Lenes M, Wetzelaer G-JAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM (2008) Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 20(11):2116–2119. https://doi.org/10.1002/adma.200702438

    Article  CAS  Google Scholar 

  26. Singh SP, Kumar CHP, Sharma GD, Kurchania R, Roy MS (2012) Synthesis of a modified PC70BM and its application as an electron acceptor with poly(3-hexylthiophene) as an Electron donor for efficient bulk heterojunction solar cells. Adv Funct Mater 22(19):4087–4095. https://doi.org/10.1002/adfm.201200729

    Article  CAS  Google Scholar 

  27. Ross RB, Cardona CM, Guldi DM, Sankaranarayanan SG, Reese MO, Kopidakis N, Peet J, Walker B, Bazan GC, Van Keuren E, Holloway BC, Drees M (2009) Endohedral fullerenes for organic photovoltaic devices. Nat Mater 8:208. https://doi.org/10.1038/nmat2379. https://www.nature.com/articles/nmat2379#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  28. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  PubMed  Google Scholar 

  29. Lang L, Yang J-H, Liu H-R, Xiang HJ, Gong XG (2014) First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites. Phys Lett A 378(3):290–293. https://doi.org/10.1016/j.physleta.2013.11.018

    Article  CAS  Google Scholar 

  30. Chueh C-C, Li C-Z, Jen AKY (2015) Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189. https://doi.org/10.1039/C4EE03824J

    Article  CAS  Google Scholar 

  31. Zhao D, Ke W, Grice CR, Cimaroli AJ, Tan X, Yang M, Collins RW, Zhang H, Zhu K, Yan Y (2016) Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers. Nano Energy 19:88–97. https://doi.org/10.1016/j.nanoen.2015.11.008

    Article  CAS  Google Scholar 

  32. Lin H-S, Jeon I, Xiang R, Seo S, Lee J-W, Li C, Pal A, Manzhos S, Goorsky MS, Yang Y, Maruyama S, Matsuo Y (2018) Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes. ACS Appl Mater Interfaces 10(46):39590–39598. https://doi.org/10.1021/acsami.8b11049

    Article  CAS  PubMed  Google Scholar 

  33. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350(6263):944. https://doi.org/10.1126/science.aad1015

    Article  CAS  PubMed  Google Scholar 

  34. Chiang C-H, Nazeeruddin MK, Grätzel M, Wu C-G (2017) The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci 10(3):808–817. https://doi.org/10.1039/C6EE03586H

    Article  CAS  Google Scholar 

  35. Wang Y-C, Li X, Zhu L, Liu X, Zhang W, Fang J (2017) Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene Electron transport layer. Adv Energy Mater 7(21):1701144. https://doi.org/10.1002/aenm.201701144

    Article  CAS  Google Scholar 

  36. Castro E, Zavala G, Seetharaman S, D'Souza F, Echegoyen L (2017) Impact of fullerene derivative isomeric purity on the performance of inverted planar perovskite solar cells. J Mater Chem A 5(36):19485–19490. https://doi.org/10.1039/C7TA06338E

    Article  CAS  Google Scholar 

  37. Xue Q, Bai Y, Liu M, Xia R, Hu Z, Chen Z, Jiang X-F, Huang F, Yang S, Matsuo Y, Yip H-L, Cao Y (2017) Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor. Adv Energy Mater 7(9):1602333. https://doi.org/10.1002/aenm.201602333

    Article  CAS  Google Scholar 

  38. Lin Y, Chen B, Zhao F, Zheng X, Deng Y, Shao Y, Fang Y, Bai Y, Wang C, Huang J (2017) Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv Mater 29(26):1700607. https://doi.org/10.1002/adma.201700607

    Article  CAS  Google Scholar 

  39. Abrusci A, Stranks SD, Docampo P, Yip H-L, Jen AKY, Snaith HJ (2013) High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. Nano Lett 13(7):3124–3128. https://doi.org/10.1021/nl401044q

    Article  CAS  PubMed  Google Scholar 

  40. Wang C, Zhao D, Grice CR, Liao W, Yu Y, Cimaroli A, Shrestha N, Roland PJ, Chen J, Yu Z, Liu P, Cheng N, Ellingson RJ, Zhao X, Yan Y (2016) Low-temperature plasma-enhanced atomic layer deposition of tin oxide electron selective layers for highly efficient planar perovskite solar cells. J Mater Chem A 4(31):12080–12087. https://doi.org/10.1039/C6TA04503K

    Article  CAS  Google Scholar 

  41. Kim J, Kim G, Kim TK, Kwon S, Back H, Lee J, Lee SH, Kang H, Lee K (2014) Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J Mater Chem A 2(41):17291–17296. https://doi.org/10.1039/C4TA03954H

    Article  CAS  Google Scholar 

  42. Ke W, Xiao C, Wang C, Saparov B, Duan H-S, Zhao D, Xiao Z, Schulz P, Harvey SP, Liao W, Meng W, Yu Y, Cimaroli AJ, Jiang C-S, Zhu K, Al-Jassim M, Fang G, Mitzi DB, Yan Y (2016) Employing Lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells. Adv Mater 28(26):5214–5221. https://doi.org/10.1002/adma.201600594

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Zhao Y, Chen Q, Yang Y, Liu Y, Hong Z, Liu Z, Hsieh Y-T, Meng L, Li Y, Yang Y (2015) Multifunctional fullerene derivative for Interface engineering in perovskite solar cells. J Am Chem Soc 137(49):15540–15547. https://doi.org/10.1021/jacs.5b10614

    Article  CAS  PubMed  Google Scholar 

  44. Dong Y, Li W, Zhang X, Xu Q, Liu Q, Li C, Bo Z (2016) Highly efficient planar perovskite solar cells via interfacial modification with fullerene derivatives. Small 12(8):1098–1104. https://doi.org/10.1002/smll.201503361

    Article  CAS  PubMed  Google Scholar 

  45. Xu Q, Lu Z, Zhu L, Kou C, Liu Y, Li C, Meng Q, Li W, Bo Z (2016) Elimination of the J–V hysteresis of planar perovskite solar cells by interfacial modification with a thermo-cleavable fullerene derivative. J Mater Chem A 4(45):17649–17654. https://doi.org/10.1039/C6TA06143E

    Article  CAS  Google Scholar 

  46. Lin H-S, Jeon I, Chen Y, Yang X-Y, Nakagawa T, Maruyama S, Manzhos S, Matsuo Y (2019) Highly selective and scalable fullerene-cation-mediated synthesis accessing Cyclo[60]fullerenes with five-membered carbon ring and their application to perovskite solar cells. Chem Mater 31(20):8432–8439. https://doi.org/10.1021/acs.chemmater.9b02468

    Article  CAS  Google Scholar 

  47. Chiang C-H, Wu C-G (2016) Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat Photonics 10(3):196–200. https://doi.org/10.1038/nphoton.2016.3

    Article  CAS  Google Scholar 

  48. Yang X-Y, Lin H-S, Jeon I, Matsuo Y (2018) Fullerene-cation-mediated Noble-metal-free direct introduction of functionalized aryl groups onto [60]fullerene. Org Lett 20(11):3372–3376. https://doi.org/10.1021/acs.orglett.8b01295

    Article  CAS  PubMed  Google Scholar 

  49. Ueno H, Jeon I, Lin H-s, Thote A, Nakagawa T, Okada H, Izawa S, Hiramoto M, Daiguji H, Maruyama S, Matsuo Y (2019) Li@C60 endohedral fullerene as a supraatomic dopant for C60 electron-transporting layers promoting the efficiency of perovskite solar cells. Chem Commun 55(79):11837–11839. https://doi.org/10.1039/C9CC06120G

    Article  CAS  Google Scholar 

  50. Jeon I, Ueno H, Seo S, Aitola K, Nishikubo R, Saeki A, Okada H, Boschloo G, Maruyama S, Matsuo Y (2018) Lithium-ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti-oxidation. Angew Chem Int Ed 57(17):4607–4611. https://doi.org/10.1002/anie.201800816

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Matsuo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lin, HS., Matsuo, Y. (2022). Fullerenes in Photovoltaics. In: Lu, X., Akasaka, T., Slanina, Z. (eds) Handbook of Fullerene Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8994-9_37

Download citation

Publish with us

Policies and ethics