Skip to main content

Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine

  • Reference work entry
  • First Online:
Nanomedicine

Part of the book series: Micro/Nano Technologies ((MNT))

Abstract

Bioinspired nanomaterials and nanostructures have received much attention in the field of biology and medicine. This chapter summarizes the progress of bioinspired nanomaterials and nanostructures and their applications in bioinspired mineralization, bioinspired DNA nanorobots, bioinspired smart nanochannels, bioinspired immune cell adhesion, bioinspired artificial vessels, and bioinspired artificial organ chips. Finally, the future of bioinspired nanomaterials and nanostructures is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ren LQ, Liang YH (2016) Introduction to bionics. Science Press, Beijing

    Google Scholar 

  2. Jiang L (2015) Bionic intelligent nanomaterials. Science Press, Beijing

    Google Scholar 

  3. Xie QD, Xu J, Feng L, Jiang L, Han CCJAM (2004) Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater 16:302–305

    Article  Google Scholar 

  4. Feng X, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed Engl 44:5115–5118

    Article  Google Scholar 

  5. Peng C, Chen Z, Tiwari MK (2018) All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance. Nat Mater 17:355–360

    Article  Google Scholar 

  6. Yeom B, Sain T, Lacevic N, Bukharina D, Cha SH, Waas AM, Arruda EM, Kotov NA (2017) Abiotic tooth enamel. Nature 543:95–98

    Article  Google Scholar 

  7. Sakimoto KK, Wong AB, Yang P (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351:74–77

    Article  Google Scholar 

  8. Lipomi DJ, Vosgueritchian M, Tee BC, Hellstrom SL, Lee JA, Fox CH, Bao Z (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792

    Article  Google Scholar 

  9. Liu Y, Liu J, Chen S, Lei T, Kim Y, Niu S, Wang H, Wang X, Foudeh AM, Tok JB, Bao Z (2019) Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat Biomed Eng 3:58–68

    Article  Google Scholar 

  10. Boutry CM, Beker L, Kaizawa Y, Vassos C, Tran H, Hinckley AC, Pfattner R, Niu S, Li J, Claverie J, Wang Z, Chang J, Fox PM, Bao Z (2019) Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat Biomed Eng 3:47–57

    Article  Google Scholar 

  11. Kim DW, Baik S, Min H, Chun S, Lee HJ, Kim KH, Lee JY, Pang C (2019) Highly permeable skin patch with conductive hierarchical architectures inspired by amphibians and octopi for omnidirectionally enhanced wet adhesion. Adv Funct Mater 29:1807614

    Article  Google Scholar 

  12. Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7:459–464

    Article  Google Scholar 

  13. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583

    Article  Google Scholar 

  14. Wang S, Wang H, Jiao J, Chen KJ, Owens GE, Kamei K, Sun J, Sherman DJ, Behrenbruch CP, Wu H, Tseng HR (2009) Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew Chem Int Ed Engl 48:8970–8973

    Article  Google Scholar 

  15. Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L (2015) Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526:118–121

    Article  Google Scholar 

  16. Kroll AV, Fang RH, Jiang Y, Zhou J, Wei X, Yu CL, Gao J, Luk BT, Dehaini D, Gao W, Zhang L (2017) Nanoparticulate delivery of cancer cell membrane elicits multiantigenic antitumor immunity. Adv Mater 29:1703969

    Article  Google Scholar 

  17. Zhang X, Angsantikul P, Ying M, Zhuang J, Zhang Q, Wei X, Jiang Y, Zhang Y, Dehaini D, Chen M, Chen Y, Gao W, Fang RH, Zhang L (2017) Remote loading of small-molecule therapeutics into cholesterol-enriched cell-membrane-derived vesicles. Angew Chem Int Ed Engl 56:14075–14079

    Article  Google Scholar 

  18. Hu CM, Fang RH, Luk BT, Zhang L (2013) Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 8:933–938

    Article  Google Scholar 

  19. Wang F, Gao W, Thamphiwatana S, Luk BT, Angsantikul P, Zhang Q, Hu CM, Fang RH, Copp JA, Pornpattananangkul D, Lu W, Zhang L (2015) Hydrogel retaining toxin-absorbing nanosponges for local treatment of methicillin-resistant Staphylococcus aureus infection. Adv Mater 27:3437–3443

    Article  Google Scholar 

  20. Chen Y, Chen M, Zhang Y, Lee JH, Escajadillo T, Gong H, Fang RH, Gao W, Nizet V, Zhang L (2018) Broad-spectrum neutralization of pore-forming toxins with human erythrocyte membrane-coated nanosponges. Adv Healthc Mater 7:e1701366

    Article  Google Scholar 

  21. Zhang Q, Dehaini D, Zhang Y, Zhou J, Chen X, Zhang L, Fang RH, Gao W, Zhang L (2018) Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 13:1182–1190

    Article  Google Scholar 

  22. Zhao H, Liu S, Wei Y, Yue Y, Gao M, Li Y, Zeng X, Deng X, Kotov NA, Guo L, Jiang L (2022) Multiscale engineered artificial tooth enamel. Science 375:551–556

    Article  Google Scholar 

  23. Wang X, Sun C, Li P, Wu T, Zhou H, Yang D, Liu Y, Ma X, Song Z, Nian Q, Feng L, Qin C, Chen L, Tang R (2016) Vaccine engineering with dual-functional mineral shell: a promising strategy to overcome preexisting immunity. Adv Mater 28:694–700

    Article  Google Scholar 

  24. Wang X, Yang D, Li S, Xu X, Qin CF, Tang R (2016) Biomineralized vaccine nanohybrid for needle-free intranasal immunization. Biomaterials 106:286–294

    Article  Google Scholar 

  25. Zhao R, Wang B, Yang X, Xiao Y, Wang X, Shao C, Tang R (2016) A drug-free tumor therapy strategy: cancer-cell-targeting calcification. Angew Chem Int Ed Engl 55:5225–5229

    Article  Google Scholar 

  26. Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han JY, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264

    Article  Google Scholar 

  27. Chen HB, Gu ZJ, An HW, Chen CY, Chen J, Cui R, Chen SQ, Chen WH, Chen XS, Chen XY, Chen Z, Ding BQ, Dong Q, Fan Q, Fu T, Hou DY, Jiang Q, Ke HT, Jiang XQ, Liu G, Li SP, Li TY, Liu Z, Nie GJ, Ovais M, Pang DW, Qiu NS, Shen YQ, Tian HY, Wang C, Wang H, Wang ZQ, Xu HP, Xu JF, Yang XL, Zhu S, Zheng XC, Zhang XZ, Zhao YB, Tan WH, Zhang X, Zhao YL (2018) Precise nanomedicine for intelligent therapy of cancer. Sci China Chem 61:1503–1552

    Article  Google Scholar 

  28. Liu Q, Wen L, Xiao K, Lu H, Zhang Z, Xie G, Kong XY, Bo Z, Jiang L (2016) A biomimetic voltage-gated chloride nanochannel. Adv Mater 28:3181–3186

    Article  Google Scholar 

  29. Shang X, Xie G, Kong XY, Zhang Z, Zhang Y, Tian W, Wen L, Jiang L (2017) An artificial CO2-driven ionic gate inspired by olfactory sensory neurons in mosquitoes. Adv Mater 29:e03884

    Article  Google Scholar 

  30. Xiao K, Xie G, Zhang Z, Kong XY, Liu Q, Li P, Wen L, Jiang L (2016) Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region. Adv Mater 28:3345–3350

    Article  Google Scholar 

  31. Li P, Xie G, Kong XY, Zhang Z, Xiao K, Wen L, Jiang L (2016) Light-controlled ion transport through biomimetic DNA-based channels. Angew Chem Int Ed Engl 55:15637–15641

    Article  Google Scholar 

  32. Cao C, Ying YL, Hu ZL, Liao DF, Tian H, Long YT (2016) Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat Nanotechnol 11:713–718

    Article  Google Scholar 

  33. Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT (2018) Asymmetric nanopore electrode-based amplification for electron transfer imaging in live cells. J Am Chem Soc 140:5385–5392

    Article  Google Scholar 

  34. Zhang P, Chen L, Xu T, Liu H, Liu X, Meng J, Yang G, Jiang L, Wang S (2013) Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv Mater 25:3566–3570

    Article  Google Scholar 

  35. Zhang F, Jiang Y, Liu X, Meng J, Zhang P, Liu H, Yang G, Li G, Jiang L, Wan LJ, Hu JS, Wang S (2016) Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett 16:766–772

    Article  Google Scholar 

  36. Li Y, Lu Q, Liu H, Wang J, Zhang P, Liang H, Jiang L, Wang S (2015) Antibody-modified reduced graphene oxide films with extreme sensitivity to circulating tumor cells. Adv Mater 27:6848–6854

    Article  Google Scholar 

  37. Wang S, Liu K, Liu J, Yu ZT, Xu X, Zhao L, Lee T, Lee EK, Reiss J, Lee YK, Chung LW, Huang J, Rettig M, Seligson D, Duraiswamy KN, Shen CK, Tseng HR (2011) Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew Chem Int Ed Engl 50:3084–3088

    Article  Google Scholar 

  38. Huang C, Yang G, Ha Q, Meng J, Wang S (2015) Multifunctional “smart” particles engineered from live immunocytes: toward capture and release of cancer cells. Adv Mater 27:310–313

    Article  Google Scholar 

  39. Liu X, Wang S (2014) Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem Soc Rev 43:2385–2401

    Article  Google Scholar 

  40. Chen L, Liu X, Su B, Li J, Jiang L, Han D, Wang S (2011) Aptamer-mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv Mater 23:4376–4380

    Article  Google Scholar 

  41. Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater 25:922–927

    Article  Google Scholar 

  42. Liu H, Li Y, Sun K, Fan J, Zhang P, Meng J, Wang S, Jiang L (2013) Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J Am Chem Soc 135:7603–7609

    Article  Google Scholar 

  43. Yu X, He R, Li S, Cai B, Zhao L, Liao L, Liu W, Zeng Q, Wang H, Guo SS, Zhao XZ (2013) Magneto-controllable capture and release of cancer cells by using a micropillar device decorated with graphite oxide-coated magnetic nanoparticles. Small 9:3895–3901

    Article  Google Scholar 

  44. Liu HQ, Yu XL, Cai B, You SJ, He ZB, Huang QQ, Rao L, Li SS, Liu C, Sun WW, Liu W, Guo SS, Zhao XZ (2015) Capture and release of cancer cells using electrospun etchable MnO2 nanofibers integrated in microchannels. Appl Phys Lett 106:093703

    Article  Google Scholar 

  45. Jiang Y, Krishnan N, Zhou J, Chekuri S, Wei X, Kroll AV, Yu CL, Duan Y, Gao W, Fang RH, Zhang L (2020) Engineered cell-membrane-coated nanoparticles directly present tumor antigens to promote anticancer immunity. Adv Mater 32:e2001808

    Article  Google Scholar 

  46. Wang Z, Li J, Cho J, Malik AB (2014) Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol 9:204–210

    Article  Google Scholar 

  47. Hu CM, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L (2011) Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci U S A 108:10980–10985

    Article  Google Scholar 

  48. Hong S, Zhang Z, Liu H, Tian M, Zhu X, Zhang Z, Wang W, Zhou X, Zhang F, Ge Q, Zhu B, Tang H, Hua Z, Hou B (2018) B cells are the dominant antigen-presenting cells that activate naive CD4(+) T cells upon immunization with a virus-derived nanoparticle antigen. Immunity 49:695–708.e694

    Article  Google Scholar 

  49. Li Y, Ma X, Yue Y, Zhang K, Cheng K, Feng Q, Ma N, Liang J, Zhang T, Zhang L, Chen Z, Wang X, Ren L, Zhao X, Nie G (2022) Rapid surface display of mRNA antigens by bacteria-derived outer membrane vesicles for a personalized tumor vaccine. Adv Mater 34:e2109984

    Article  Google Scholar 

  50. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  Google Scholar 

  51. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357

    Article  Google Scholar 

  52. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560:382–386

    Article  Google Scholar 

  53. Pi F, Binzel DW, Lee TJ, Li Z, Sun M, Rychahou P, Li H, Haque F, Wang S, Croce CM, Guo B, Evers BM, Guo P (2018) Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat Nanotechnol 13:82–89

    Article  Google Scholar 

  54. Mathieu M, Martin-Jaular L, Lavieu G, Théry C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21:9–17

    Article  Google Scholar 

  55. Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, Chan YS, Wei L, Chin SM, Azad A, He AB, Leung AYH, Yang M, Shyh-Chang N, Cho WC, Shi J, Le MTN (2018) Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat Commun 9:2359

    Article  Google Scholar 

  56. Niu W, Xiao Q, Wang X, Zhu J, Li J, Liang X, Peng Y, Wu C, Lu R, Pan Y, Luo J, Zhong X, He H, Rong Z, Fan JB, Wang Y (2021) A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy. Nano Lett 21:1484–1492

    Article  Google Scholar 

  57. Xiao Q, Zhao W, Wu C, Wang X, Chen J, Shi X, Sha S, Li J, Liang X, Yang Y, Guo H, Wang Y, Fan JB (2022) Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis-triggered energy dissipation and energy production reduction. Adv Sci 9:e2105274

    Article  Google Scholar 

  58. Luo N, Weber JK, Wang S, Luan B, Yue H, Xi X, Du J, Yang Z, Wei W, Zhou R, Ma G (2017) PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat Commun 8:14537

    Article  Google Scholar 

  59. Xia Y, Wu J, Wei W, Du Y, Wan T, Ma X, An W, Guo A, Miao C, Yue H, Li S, Cao X, Su Z, Ma G (2018) Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat Mater 17:187–194

    Article  Google Scholar 

  60. Xia Y, Wu J, Du Y, Miao C, Su Z, Ma G (2018) Bridging systemic immunity with gastrointestinal immune responses via oil-in-polymer capsules. Adv Mater 30:e1801067

    Article  Google Scholar 

  61. Li F, Nie W, Zhang F, Lu G, Lv C, Lv Y, Bao W, Zhang L, Wang S, Gao X, Wei W, Xie HY (2019) Engineering magnetosomes for high-performance cancer vaccination. ACS Cent Sci 5:796–807

    Article  Google Scholar 

  62. Zhang F, Zhao LJ, Wang SM, Yang J, Lu GH, Luo NN, Gao XY, Ma GH, Xie HY, Wei W (2018) Construction of a biomimetic magnetosome and its application as a SiRNA carrier for high-performance anticancer therapy. Adv Funct Mater 28:1703326

    Article  Google Scholar 

  63. Mao YD, Sun QM, Wang XF, Ouyang Q, Han L, Jiang L, Han D (2009) In vivo nanomechanical imaging of blood-vessel tissues directly in living mammals using atomic force microscopy. Appl Phys Lett 95:013704

    Article  Google Scholar 

  64. Guo FY, Wang N, Wang L, Hou LL, Ma L, Liu J, Chen YE, Fan BB, Zhao Y (2015) An electrospun strong PCL/PU composite vascular graft with mechanical anisotropy and cyclic stability. J Mater Chem A 3:4782–4787

    Article  Google Scholar 

  65. Liu K, Wang N, Wang WS, Shi LX, Li H, Guo FY, Zhang LH, Kong L, Wang ST, Zhao Y (2017) A bio-inspired high strength three-layer nanofiber vascular graft with structure guided cell growth. J Mater Chem B 5:3758–3764

    Article  Google Scholar 

  66. Cheng SY, Jin Y, Wang NX, Cao F, Zhang W, Bai W, Zheng WF, Jiang XY (2017) Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv Mater 29:1700171

    Article  Google Scholar 

  67. Gong PY, Zheng WF, Huang Z, Zhang W, Xiao D, Jiang XY (2013) A strategy for the construction of controlled, three-dimensional, multilayered, tissue-like structures. Adv Funct Mater 23:42–46

    Article  Google Scholar 

  68. Yuan B, Jin Y, Sun Y, Wang D, Sun JS, Wang Z, Zhang W, Jiang XY (2012) A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv Mater 24:890–896

    Article  Google Scholar 

  69. Jin Y, Wang NX, Yuan B, Sun JS, Li MM, Zheng WF, Zhang W, Jiang XY (2013) Stress-induced self-assembly of complex three dimensional structures by elastic membranes. Small 9:2410–2414

    Article  Google Scholar 

  70. Zhao Z, Wang J, Lu J, Yu YR, Fu FF, Wang H, Liu YX, Zhao YJ, Gu ZZ (2016) Tubular inverse opal scaffolds for biomimetic vessels. Nanoscale 8:13574–13580

    Article  Google Scholar 

  71. Cheng Y, Zheng FY, Lu J, Shang LR, Xie ZY, Zhao YJ, Chen YP, Gu ZZ (2014) Bioinspired multicompartmental microfibers from microfluidics. Adv Mater 26:5184–5190

    Article  Google Scholar 

  72. Cheng Y, Yu YR, Fu FF, Wang J, Shang LR, Gu ZZ, Zhao YJ (2016) Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces 8:1080–1086

    Article  Google Scholar 

  73. Wang H, Zhao Z, Liu YX, Shao CM, Bian FK, Zhao YJ (2018) Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci Adv 4:eaat2816

    Article  Google Scholar 

  74. Yu YR, Fu FF, Shang LR, Cheng Y, Gu ZZ, Zhao YJ (2017) Bioinspired helical microfibers from microfluidics. Adv Mater 29:1605765

    Article  Google Scholar 

  75. Yu YR, Shang LR, Gao W, Zhao Z, Wang H, Zhao YJ (2017) Microfluidic lithography of bioinspired helical micromotors. Angew Chem Int Ed Engl 56:12127–12131

    Article  Google Scholar 

  76. Fu FF, Shang LR, Chen ZY, Yu YR, Zhao YJ (2018) Bioinspired living structural color hydrogels. Sci Robot 3:eaar8580

    Article  Google Scholar 

  77. Qu YY, An F, Luo Y, Lu Y, Liu TJ, Zhao WJ, Lin BC (2018) A nephron model for study of drug-induced acute kidney injury and assessment of drug-induced nephrotoxicity. Biomaterials 155:41–53

    Article  Google Scholar 

  78. Wang L, Tao TT, Su WT, Yu H, Yu Y, Qin JH (2017) A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip 17:1749–1760

    Article  Google Scholar 

  79. Ye SH, Watanabe J, Iwasaki Y, Ishihara K (2003) Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24:4143–4152

    Article  Google Scholar 

  80. Tijink MS, Wester M, Sun J, Saris A, Bolhuis-Versteeg LA, Saiful S, Joles JA, Borneman Z, Wessling M, Stamatialis DF (2012) A novel approach for blood purification: mixed-matrix membranes combining diffusion and adsorption in one step. Acta Biomater 8:2279–2287

    Article  Google Scholar 

  81. Muirhead EE, Reid AF (1948) A resin artificial kidney. J Lab Clin Med 33:841–844

    Google Scholar 

  82. Lee SJ, Choi BK (2012) The artificial glomerulus design using diffusion in microchannels. Int J Precis Eng Manuf 13:307–310

    Article  Google Scholar 

  83. Gu Y, Miki N (2009) Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney. J Micromech Microeng 19:1–8

    Article  Google Scholar 

  84. Gura V, Davenport A, Beizai M, Ezon C, Ronco C (2009) Beta2-microglobulin and phosphate clearances using a wearable artificial kidney: a pilot study. Am J Kidney Dis 54:104–111

    Article  Google Scholar 

  85. Fissell WH, Roy S, Davenport A (2013) Achieving more frequent and longer dialysis for the majority: wearable dialysis and implantable artificial kidney devices. Kidney Int 84:256–264

    Article  Google Scholar 

  86. Cheah WK, Ishikawa K, Othman R, Yeoh FY (2017) Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: a review. J Biomed Mater Res B Appl Biomater 105:1232–1240

    Article  Google Scholar 

  87. Fan JB, Luo J, Luo Z, Song YY, Wang Z, Meng JX, Wang BS, Zhang SD, Zheng ZJ, Chen XD, Wang ST (2019) Bioinspired microfluidic device by integrating a porous membrane and heterostructured nanoporous particles for biomolecule cleaning. ACS Nano 13:8374–8381

    Article  Google Scholar 

  88. Luo J, Fan JB, Wang ST (2020) Recent progress of microfluidic devices for hemodialysis. Small 16:e1904076

    Article  Google Scholar 

  89. Wang YQ, Wang L, Guo YQ, Zhu YJ, Qin JH (2018) Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system. RSC Adv 8:1677–1685

    Article  Google Scholar 

  90. Wang YQ, Wang L, Zhu YJ, Qin JH (2018) Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab Chip 18:851–860

    Article  Google Scholar 

  91. Xu H, Li ZY, Yu Y, Sizdahkhani S, Ho WS, Yin FC, Wang L, Zhu GL, Zhang M, Jiang L, Zhuang ZP, Qin JH (2016) A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep 6:36670

    Google Scholar 

  92. Mingjie, Liu Shutao, Wang Lei, Jiang (2017) Nature-inspired superwettability systems. Nature Reviews Materials 2(7):17036. https://doi.org/10.1038/natrevmats.2017.36

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fan, JB., Li, Y., Wang, S., Jiang, L. (2023). Bioinspired Nanomaterials and Nanostructures from Nanobiology to Nanomedicine. In: Gu, N. (eds) Nanomedicine. Micro/Nano Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-16-8984-0_3

Download citation

Publish with us

Policies and ethics