Skip to main content

On Security and Performance Requirements of Decentralized Resource Discovery in IoT

  • Conference paper
  • First Online:
Recent Innovations in Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 855))

  • 839 Accesses

Abstract

The resources in Internet of Things (IoT) are distributed among different physical geographic locations. In centralized resource discovery, the resources are registered in a centralized third-party server, and the clients can discover any resource by querying the centralized entity. In the decentralized resource discovery, the task of resource registration and discovery is distributed among many nodes in the system. Replacing a centralized entity with a distributed set of nodes requires that a system fulfils some security and performance requirements. In this paper, the centralized and decentralized resource discovery models are discussed. In addition, the properties of decentralized resource discovery are studied, and some of the fundamental and most important requirements for such models are discussed. Each of the fundamental requirements in decentralized resource discovery is analysed, and the possible approaches and their feasibility in IoT network are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Zhang, N. Mor, J. Kolb, D.S. Chan, K. Lutz, E. Allman, J. Wawrzynek, E. Lee, J. Kubiatowicz, The cloud is not enough: saving iot from the cloud, in 7th Workshop on Hot Topics in Cloud Computing (HotCloud 15) (2015)

    Google Scholar 

  2. M.B. Kamel, B. Crispo, P. Ligeti, A decentralized and scalable model for resource discovery in iot network, in 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (IEEE, 2019), pp. 1–4

    Google Scholar 

  3. B. Rana, Y. Singh, P.K. Singh, A systematic survey on internet of things: energy efficiency and interoperability perspective. Trans. Emerg. Telecommun. Technol. (2020)

    Google Scholar 

  4. P. Malhotra, Y. Singh, P. Anand, D.K. Bangotra, P.K. Singh, W.-C. Hong, Internet of things: evolution, concerns and security challenges. Sensors 21(5), 1809 (2021)

    Article  Google Scholar 

  5. K. Khalil, K. Elgazzar, M. Seliem, M. Bayoumi, Resource discovery techniques in the internet of things: a review. Intern. Things 100293 (2020)

    Google Scholar 

  6. H. Zhang, Y. Wen, H. Xie, N. Yu, A survey on distributed hash table (dht): theory, platforms, and applications (2013)

    Google Scholar 

  7. M.B. Kamel, Y. Yan, P. Ligeti, C. Reich, A decentralized resource discovery using attribute based encryption for internet of things, in 2020 4th Cyber Security in Networking Conference (CSNet) (IEEE, 2020), pp. 1–3

    Google Scholar 

  8. A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and routing for large-scale peer-to-peer systems, in IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed Processing (Springer, 2001), pp. 329–350

    Google Scholar 

  9. I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup service for internet applications. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)

    Article  Google Scholar 

  10. P. Maymounkov, D. Mazieres, Kademlia: A peer-to-peer information system based on the xor metric, in International Workshop on Peer-to-Peer Systems (Springer, 2002), pp. 53–65

    Google Scholar 

  11. B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, J.D. Kubiatowicz, Tapestry: a resilient global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. 22(1), 41–53 (2004)

    Article  Google Scholar 

  12. W.D. Maurer, T.G. Lewis, Hash table methods. ACM Comput. Surv. (CSUR) 7(1), 5–19 (1975)

    Article  Google Scholar 

  13. S.K. Datta, R.P.F. Da Costa, C. Bonnet, Resource discovery in internet of things: current trends and future standardization aspects, in 2nd World Forum on Internet of Things (WF-IoT) (IEEE, 2015), pp. 542–547

    Google Scholar 

  14. H. Wirtz, T. Heer, R. Hummen, K. Wehrle, Mesh-dht: a locality-based distributed look-up structure for wireless mesh networks, in 2012 IEEE International Conference on Communications (ICC) (2012), pp. 653–658

    Google Scholar 

  15. S. Ali, S. Banerjea, M. Pandey, N. Tyagi, Wireless fog-mesh: a communication and computation infrastructure for iot based smart environments,” in Mobile, Secure, and Programmable Networking (Springer International Publishing, Cham, 2019), pp. 322–338

    Google Scholar 

  16. H. Wirtz, T. Heer, M. Serror, K. Wehrle, Dht-based localized service discovery in wireless mesh networks, in 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012) (IEEE, 2012), pp. 19–28

    Google Scholar 

  17. R. Mokadem, A. Hameurlain, A.M. Tjoa, “Resource discovery service while minimizing maintenance overhead in hierarchical dht systems. Int. J. Adapt. Resil. Autonom. Syst. (IJARAS) 3(2), 1–17 (2012)

    Google Scholar 

  18. Y. Yan, M.B. Kamel, P. Ligeti, Attribute-based encryption in cloud computing environment, in 2020 International Conference on Computing, Electronics and Communications Engineering (iCCECE) (IEEE, 2020), pp. 63–68

    Google Scholar 

  19. M. Chase, Multi-authority attribute based encryption, in Theory of Cryptography Conference (Springer, 2007), pp. 515–534

    Google Scholar 

  20. M.B.M. Kamel, P. Ligeti, C. Reich, Lamred: Location aware and privacy preserving multi layer resource discovery for iot. Acta Cybern. (2021)

    Google Scholar 

  21. M. El-Hajj, A. Fadlallah, M. Chamoun, A. Serhrouchni, A survey of internet of things (iot) authentication schemes. Sensors 19(5), 1141 (2019)

    Article  Google Scholar 

  22. J. Weise, Public key infrastructure overview, in Sun BluePrints OnLine, August (2001), pp. 1–27

    Google Scholar 

  23. N. Hong, A security framework for the internet of things based on public key infrastructure, in Advanced Materials Research, vol. 671 (Trans Tech Publications, 2013), pp. 3223–3226

    Google Scholar 

  24. D. Wing, S. Cheshire, M. Boucadair, R. Penno, P. Selkirk, Port control protocol (pcp), in Internet Eng. Task Force, Fremont, CA, USA, RFC, vol. 6887 (2013)

    Google Scholar 

  25. M.B.M. Kamel, P. Ligeti, A. Nagy, Improved approach of address propagation for f2f networks, in Proceedings of the 2nd European Conference on Electrical Engineering and Computer Science (IEEE, 2018), pp. 604–609

    Google Scholar 

  26. M.B.M. Kamel, P. Ligeti, A. Nagy, C. Reich, “Distributed address table (dat): a decentralized model for end-to-end communication in iot. J. Peer-to-Peer Netw. Appl. (2021)

    Google Scholar 

  27. E.F. Kfoury, J. Gomez, J. Crichigno, E. Bou-Harb, D. Khoury, Decentralized distribution of pcp mappings over blockchain for end-to-end secure direct communications. IEEE Access 7, 110159–110173 (2019)

    Article  Google Scholar 

  28. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-addressable network, in Proceedings of the 2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (2001), pp. 161–172

    Google Scholar 

  29. F. Paganelli, D. Parlanti, A dht-based discovery service for the internet of things. J. Comput. Netw. Commun. 2012 (2012)

    Google Scholar 

  30. S. Ramabhadran, S. Ratnasamy, J.M. Hellerstein, S. Shenker, Prefix hash tree: an indexing data structure over distributed hash tables, in Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing, vol. 37 (2004)

    Google Scholar 

  31. E.K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7(2), 72–93 (2005)

    Article  Google Scholar 

  32. M.B.M. Kamel, P. Ligeti, C. Reich, Region-based distributed hash table for fog computing infrastructure, in 13th Joint Conference on Mathematics and Informatics (2020), pp. 82–83

    Google Scholar 

  33. M. Picone, M. Amoretti, F. Zanichelli, Geokad: a p2p distributed localization protocol, in 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops) (IEEE, 2010), pp. 800–803

    Google Scholar 

  34. S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, L. Veltri, A scalable and self-configuring architecture for service discovery in the internet of things. IEEE Intern. Things J. 1(5), 508–521 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Application Domain Specific Highly Reliable IT Solutions project, which has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme, ÚNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of National Research, Development and Innovation Fund, SH programme and by the Ministry of Science, Research and the Arts Baden-Württemberg Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed B. M. Kamel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamel, M.B.M., Ligeti, P., Reich, C. (2022). On Security and Performance Requirements of Decentralized Resource Discovery in IoT. In: Singh, P.K., Singh, Y., Chhabra, J.K., Illés, Z., Verma, C. (eds) Recent Innovations in Computing. Lecture Notes in Electrical Engineering, vol 855. Springer, Singapore. https://doi.org/10.1007/978-981-16-8892-8_22

Download citation

Publish with us

Policies and ethics