Skip to main content

The Design, Synthesis, and Characterization of Iron Oxide-Based Coating-Based Nanoproducts

  • Reference work entry
  • First Online:
Handbook of Consumer Nanoproducts

Abstract

Iron oxide-based nanoparticles have great interest in biomedicine, due to their wide range of applications. The synthesis of iron oxide-based nanoparticles is a very important procedure so both physical and chemical properties of the nanoparticles must be controlled with different analyses. The properties of the synthesized nanoparticles are determined by these analyzes, energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), infrared (IR) absorption spectroscopy, atomic force microscopy (AFM), dynamic light scattering (DLS), hydrophobic interaction chromatography, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), etc. Nanoparticles that are successfully synthesized and optimized can be used safely and allowing widespread biomedical uses such as targeted drug delivery, bioimaging, hyperthermia, biosensors. This chapter focuses on synthesis and characterization methods of iron oxide-based nanoparticles and also includes in future perspectives in iron oxide-based cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFM :

atomic force microscopy

ATR :

attenuated total reflection

CPT :

coprecipitation

DLS :

dynamic light scattering

DLS :

dynamic light scattering

EBL :

electron beam lithography

EDX :

energy dispersive x-ray

ESEM :

environmental SEM

FCS :

fluorescence correlation spectroscopy

FT-IR :

Fourier transform infrared spectroscopy

GISANS :

grazing-incidence small-angle neutron scattering

GISAXS :

grazing-incidence small-angle x-ray scattering

IONs :

iron oxide nanoparticles

IR :

infrared

İron oxide-based nanoparticles :

nanoparticles

MRI :

magnetic resonance imaging

MS :

mass spectroscopy

MTB :

magnetotactic bacteria

NMR :

nuclear magnetic resonance

NSOM :

near-field scanning optical microscopy

PVD :

physical vapor deposition

RS :

Raman scattering

SANS :

small-angle neutron scattering

SAXS :

small-angle x-ray scattering

SEM :

scanning electron microscopy

SERS :

surface-enhanced Raman scattering

SPIONs :

superparamagnetic iron oxide nanoparticles

STM :

scanning tunneling microscopy

TEM :

transmission electron microscopy

TERS :

tip-enhanced Raman spectroscopy

TGA :

thermal gravimetric analysis

VSM :

vibrating sample magnetometry

XPS :

x-ray photoelectron spectroscopy

XRD :

x-ray diffraction analysis

α :

alpha

γ :

gamma

emu :

electromagnetic unit

eV :

electronvolt

g :

gram

3D :

three dimensional

NH 4 OH :

ammonium hydroxide

O :

oxygen

Fe :

iron

nm :

nanometer

K :

kelvin

psi :

pound-force per square inch

Cl :

chlorides

w/o :

water-in-oil

o/w :

oil-in-water

References

  1. Abdolmaleki A, Mallakpour S, Karshenas A (2017a) Synthesis and characterization of new nanocomposites films using alanine-Cu-functionalized graphene oxide as nanofiller and PVA as polymeric matrix for improving of their properties. J Solid State Chem 253:398–405

    Article  CAS  Google Scholar 

  2. Abdolmaleki A, Mallakpour S, Mahmoudian M (2017b) Preparation and evaluation of edge selective sulfonated graphene by chlorosulfuric acid as an active metal-free electrocatalyst for oxygen reduction reaction in alkaline media. ChemistrySelect 34:11211–11217

    Article  CAS  Google Scholar 

  3. Abdolmaleki A, Mallakpour S, Karshenas A (2017c) Facile synthesis of glucose-functionalized reduced graphene oxide (GFRGO)/poly(vinyl alcohol) nanocomposites for improving thermal and mechanical properties. Mater Sci Eng B 217:26–35

    Article  CAS  Google Scholar 

  4. Abushrida A, Elhuni I, Taresco V, Marciani L, Stolnik S, Garnett MC (2020) A simple and efficient method for polymer coating of iron oxide nanoparticles. J Drug Deliv Sci Technol 55:101460

    Article  CAS  Google Scholar 

  5. Ahrberg CD, Choi JW, Chung BG (2020) Automated droplet reactor for the synthesis of iron oxide/gold core-shell nanoparticles. Sci Rep 10:1737

    Article  CAS  Google Scholar 

  6. Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  Google Scholar 

  7. Babay S, Mhiri T, Toumi M (2015) Synthesis, structural and spectroscopic characterizations of maghemite g-Fe2O3 prepared by one-step coprecipitation route. J Mol Struct 1085:286–293

    Article  CAS  Google Scholar 

  8. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11

    Google Scholar 

  9. Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F, Baeza A (2020) The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25(1):112

    Article  CAS  Google Scholar 

  10. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2(1):135–141

    Article  CAS  Google Scholar 

  11. Campos EA, Pinto DVBS, Sampaio de Oliveira JI, Mattos EC, Dutra RCL (2015) Synthesis, characterization and applications of ıron oxide nanoparticles. J Aerosp Technol Manag 7(3):267–276

    Article  CAS  Google Scholar 

  12. Chen Z, Wu C, Zhang Z, Wu W, Wang X, Yu Z (2018) Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chin Chem Lett 29:1601–1608

    Article  CAS  Google Scholar 

  13. Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150

    Article  CAS  Google Scholar 

  14. Dobson P (2019) Nanoparticle. In: Encyclopaedia Britannica Inc (ed) Encyclopaedia Britannica

    Google Scholar 

  15. Dulinska-Litewka J, Lazarczyk A, Halubiec P, Szafranski O, Karnas K, Karewicz A (2019) Superparamagnetic Iron oxide nanoparticles-current and prospective medical applications. Materials 12:617

    Article  CAS  Google Scholar 

  16. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  17. Gonzalez-Rodriguez R, Campbell E, Naumov A (2019) Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 14(6):e0217072

    Article  CAS  Google Scholar 

  18. Gubin SP (2009) Magnetic nanoparticles. Wiley-VCH. ISBN:978-3-527-40790-3

    Book  Google Scholar 

  19. Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci 4:9–11

    Google Scholar 

  20. Hernández-Hernández AA, Aguirre-Álvarez G, Cariño-Cortés R, Mendoza-Huizar LH, Jiménez-Alvarado R (2020) Iron oxide nanoparticles: synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem Pap 74:3809–3824

    Article  CAS  Google Scholar 

  21. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  22. Hussain CM (2018) Handbook of nanomaterials for industrial applications. Elsevier

    Google Scholar 

  23. Hussain CM (2020a) The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization. Wiley

    Book  Google Scholar 

  24. Hussain CM (2020b) Handbook of functionalized nanomaterials for industrial applications. Elsevier

    Google Scholar 

  25. Hussain CM (2020c) Handbook of manufacturing applications of nanomaterials. Elsevier

    Google Scholar 

  26. Hussain CM (2020d) Handbook of polymer nanocomposites for industrial applications. Elsevier

    Google Scholar 

  27. Hussain CM, Mishra AK (2019) Nanotechnology in environmental science, 2 vols. Wiley

    Google Scholar 

  28. Kharey P, Dutta SB, Manikandan M, Palani IA, Majumder SK, Gupta S (2019) Green synthesis of near-infrared absorbing eugenate capped iron oxide nanoparticles for photothermal application. Nanotechnology 31(9):095705

    Article  CAS  Google Scholar 

  29. Kojima K, Miyazaki M, Mizukami F, Maeda K (1997) Selective formation of spinel iron oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8(1–3):77–81

    CAS  Google Scholar 

  30. Lin XM, Samia AC (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305(1):100–109

    Article  CAS  Google Scholar 

  31. Ling D, Hyeon T (2013) Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small 9(9–10):1450–1466

    Article  CAS  Google Scholar 

  32. Liveri VT (2006) Controlled synthesis of nanoparticles in microheterogeneous systems. Springer

    Google Scholar 

  33. Lowell S, Shields JE (1984) Powder surface area and porosity. Chapman & Hall, London/New York

    Book  Google Scholar 

  34. Machala L, Tucek J, Zboril R (2011) Polymorphous transformations of nanometric iron (III) oxide: a review. Chem Mater 23(14):3255–3272

    Article  CAS  Google Scholar 

  35. Mallakpour S, Behranvand V (2018) Synthesis of mesoporous recycled poly(ethylene terephthalate)/MWNT/carbon quantum dot nanocomposite from sustainable materials using ultrasonic waves: application for methylene blue removal. J Clean Prod 190:525–537

    Article  CAS  Google Scholar 

  36. Mallakpour S, Khadem E (2016) Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications. Chem Eng J 302:344–367

    Article  CAS  Google Scholar 

  37. Mallakpour S, Khadem E (2018) Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. Int J Biol Macromol 120:1451–1460

    Article  CAS  Google Scholar 

  38. Mallakpour S, Khadem E (2019a) Linear and nonlinear behavior of crosslinked chitosan/N-doped graphene quantum dot nanocomposite films in cadmium cation uptake. Sci Total Environ 690:1245–1253

    Article  CAS  Google Scholar 

  39. Mallakpour S, Khadem E (2019b) Chapter 8: Carbon nanotubes for heavy metals removal. In: Kyzas G, Mitrpoulos AC (eds) Composite nanoadsorbents. Elsevier, Amsterdam, pp 181–210. https://doi.org/10.1016/B978-0-12-814132-8.00009-5. eBook ISBN:9780128141335

    Chapter  Google Scholar 

  40. Mallakpour S, Khodadadzadeh L (2018) Chapter 7: Biocompatible and biodegradable chitosan nanocomposites loaded with carbon nanotubes. In: Shimpi NG (ed) Biodegradable and biocompatible polymer composites processing, properties and applications. Elsevier, Woodhead Publishing, Sawston, pp 187–221. https://doi.org/10.1016/B978-0-08-100970-3.00007-9

    Chapter  Google Scholar 

  41. Mallakpour S, Rashidimoghadam R (2019) Chapter 9: Carbon nanotubes for dyes removal. In: Kyzas G, Mitrpoulos AC (eds) Composite nanoadsorbents. Elsevier, Amsterdam, pp 211–244. https://doi.org/10.1016/B978-0-12-814132-8.00010-1. eBook ISBN:9780128141335

    Chapter  Google Scholar 

  42. Mallakpour S, Rashidimoghadam S (2021) Chapter 29: Utilization of starch and starch/carbonaceous nanocomposites for removal of pollutants from wastewater. In: Hussain CM (ed) Handbook of polymer nanocomposites for industrial applications

    Google Scholar 

  43. Mallakpour S, Abdolmaleki A, Borandeh (2017a) Fabrication of amino acid-based graphene-zinc oxide (ZnO) hybrid and its application for poly(ester–amide)/graphene-ZnO nanocomposite synthesis. J Thermoplast Compos Mater 30:358–380

    Article  CAS  Google Scholar 

  44. Mallakpour S, Abdolmaleki A, Karshenas A (2017b) Graphene oxide supported copper coordinated amino acids as novel heterogeneous catalysts for epoxidation of norbornene. Catal Commun 92:109–113

    Article  CAS  Google Scholar 

  45. Mallakpour S, Abdolmaleki A, Mahmoudian M, Ensafi AA, Abarghoui M (2017c) Synergetic effect of synthesized sulfonated polyaniline/quaternized graphene and its application as a high-performance supercapacitor electrode. J Mater Sci 52:9683–9695

    Article  CAS  Google Scholar 

  46. Mallakpour S, Behranvand V, Mallakpour F (2019) Synthesis of alginate/carbon nanotube/carbon dot/fluoroapatite/TiO2 beads for dye photocatalytic degradation under ultraviolet light. Carbohydr Polym 224:115138

    Article  CAS  Google Scholar 

  47. Mallakpour S, Azadi E, Hussain CM (2020a) Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 419:213378

    Article  CAS  Google Scholar 

  48. Mallakpour S, Hatami M, Hussain CM (2020b) Recent innovations in functionalized layered double hydroxides: fabrication, characterization, and industrial applications. Adv Colloid Interface Sci:102216

    Google Scholar 

  49. Mannheimer WA (2002) Chapter V: Microscopia dos materiais: uma introdução. In: Microscopia eletrônica de transmissão. E-papers, Rio de Janeiro, p V.1

    Google Scholar 

  50. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    Article  CAS  Google Scholar 

  51. Nawaz M, Sliman Y, Ercan I, Lima-Tenório MK, Tenório-Neto ET, Kaewsaneha C, Elaissari A (2019) Magnetic and pH-responsive magnetic nanocarriers. Adv Nanocarr Ther Woodhead Publ Ser Biomater 2:37–85

    CAS  Google Scholar 

  52. Nowrouzi A, Meghrazi K, Golmohammadi T, Golestani A, Ahmadian S, Shafiezadeh M, Oliveira LCA, Fabris JD, Pereira MC (2013) Óxidos de ferro e suas aplicações em processos catalíticos: uma revisão. Quím Nova 36(1):123–130

    Article  Google Scholar 

  53. Park J, Kadasala NR, Abouelmagd SA, Castanares MA, Collins DS, Wei A, Yeo Y (2016) Polymer-iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295

    Article  CAS  Google Scholar 

  54. Rego GNA, Mamani JB, Souza TKF, Nucci MP, Silva HRD, Gamarra LF (2019) Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Einstein (Sao Paulo) 17(4):eAO4786

    Article  Google Scholar 

  55. Roth WL (1958) Magnetic structures of MnO, FeO, CoO, and NiO. Phys Rev 110:1333–1341

    Article  CAS  Google Scholar 

  56. Sakka S (2016) History of the sol-gel chemistry and technology. In: Klein L et al (eds) Handbook of sol-gel science and technology

    Google Scholar 

  57. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633

    Article  CAS  Google Scholar 

  58. Srivastava M, Chaubey A, Ojha AK (2009) Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods. Mater Chem Phys 118(1):174–180

    Article  CAS  Google Scholar 

  59. Starmans LW, Burdinski D, Haex NP, Moonen RP, Strijkers GJ, Nicolay K, Grüll H (2013) Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging. PLoS One 8(2):e57335

    Article  CAS  Google Scholar 

  60. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205

    Article  CAS  Google Scholar 

  61. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8:127–133

    Article  CAS  Google Scholar 

  62. Tarantash M, Nosrati H, Kheiri MH, Baradar KA (2018) Preparation, characterization and in vitro anticancer activity of paclitaxel conjugated magnetic nanoparticles. Drug Dev Ind Pharm 44:1895–1903

    Article  CAS  Google Scholar 

  63. Tartaj P, del Puerto MM, Veintemillas-Verdaguer S, González-Carreño T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):R182

    Article  CAS  Google Scholar 

  64. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  Google Scholar 

  65. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14(11):1–13

    Article  CAS  Google Scholar 

  66. Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F (2018) Applications of magnetotactic bacteria, magnetosomes and magnetosome crystals in biotechnology and nanotechnology: mini-review. Molecules 23(10):2438

    Article  CAS  Google Scholar 

  67. Wajnberg E, Rossi AL, Esquivel DMS (2017) Titanium and iron titanium oxide nanoparticles in antennae of the migratory ant Pachycondyla marginata: an alternative magnetic sensor for magnetoreception? Biometals 30(4):541–548

    Article  CAS  Google Scholar 

  68. Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK (2018) Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 8(1):3682

    Article  CAS  Google Scholar 

  69. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW (2004) Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem Mater 16(14):2814–2818

    Article  CAS  Google Scholar 

  70. Wu S, Sun A, Zhai F, Wang J, Xu W, Zhang Q, Volinsky AA (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett 65(12):1882–1884

    Article  CAS  Google Scholar 

  71. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  CAS  Google Scholar 

  72. Xu H, Wang X, Zhang L (2008) Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol 185(2):176–180

    Article  CAS  Google Scholar 

  73. Xu H, Zeigera BW, Suslick KS (2013) Sonochemical synthesis of nanomaterials. Chem Soc Rev 42:2555–2567

    Article  CAS  Google Scholar 

  74. Yalcin S (2019) Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line. Pharm Dev Technol 24(8):1032–1037

    Article  CAS  Google Scholar 

  75. Yalcin S, Gündüz U (2018) The magnetic nanobased strategies to overcome drug resistance in breast cancer therapy. In: Handbook of nanomaterials for industrial applications. Elsevier, pp 577–586

    Chapter  Google Scholar 

  76. Yalcin S, Gündüz U (2019) Iron oxide-based polymeric magnetic nanoparticles for drug and gene delivery: in vitro and in vivo applications in cancer. In: Handbook of polymer and ceramic nanotechnology, pp 1–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Yalcin .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ata, F.K., Yalçınkaya, S., Yalcin, S. (2022). The Design, Synthesis, and Characterization of Iron Oxide-Based Coating-Based Nanoproducts. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-16-8698-6_56

Download citation

Publish with us

Policies and ethics