Skip to main content

Robust Fixed-Time Attitude Stabilization of Flexible Spacecraft via Active Disturbance Rejection Method

  • Conference paper
  • First Online:
Proceedings of 2021 Chinese Intelligent Systems Conference

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 805))

  • 1878 Accesses

Abstract

This brief mainly investigates the fixed-time attitude stabilization problem for flexible spacecraft subject to inertia uncertainties and external disturbances. First of all, based on active disturbance rejection method, extended state observers and gradient projection estimators are combined to estimate the angular velocity and “total disturbance” of spacecraft simultaneously. Then, a saturation-type controller is constructed, which uses terminal sliding mode technique to achieve fixed-time attitude stabilization. Moreover, a sinusoidal compensating term is added in the controller to solve the singularity problem. Finally, numerical simulations are conducted to illustrate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, J., Zhao, W., Shen, G., et al.: Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–8 (2020). https://doi.org/10.1109/TSMC.2019.2947320

  2. Xia, Y., Su Y.: Global saturated velocity-free finite-time control for attitude tracking of spacecraft. IET Control Theory Appl. 13(11), 1591–1602 (2019). https://doi.org/10.1049/iet-cta.2018.5952

  3. Bayat, F.: Model predictive sliding control for finite-time three-axis spacecraft attitude tracking. IEEE Trans. Industr. Electron. 66(10), 7986–7996 (2019). https://doi.org/10.1109/TIE.2018.2881936

    Article  Google Scholar 

  4. Zhao, L., Yu, J.: Adaptive finite-time attitude tracking control for spacecraft with disturbances. IEEE Trans. Aerosp. Electron. Syst. 54(3), 1297–1305 (2018). https://doi.org/10.1109/TAES.2017.2780638

  5. Ma, G., Jiang, B., et al.: Finite-time output feedback attitude control for spacecraft using “Adding a power integrator” technique. Aerosp. Sci. Technol. 66, 342–354 (2017). https://doi.org/10.1016/j.ast.2017.03.026

  6. Hu, Q., Li, B., Qi, J.: Disturbance observer based finite-time attitude control for rigid spacecraft under input saturation. Aerosp. Sci. Technol. 39, 13–21 (2014). https://doi.org/10.1016/j.ast.2014.08.009

  7. Lu, K., Xia, Y.: Adaptive attitude tracking control for rigid spacecraft with finite-time convergence. Automatica 49(12), 3591–3599 (2013). https://doi.org/10.1016/j.automatica.2013.09.001

  8. Wu, S., et al.: Quaternion-based finite time control for spacecraft attitude tracking. Acta Astronaut. 69(1–2), 48–58 (2011). https://doi.org/10.1016/j.actaastro.2011.03.001

    Article  Google Scholar 

  9. Du, H., Zhang, J., et al.: Fixed-time attitude stabilization for a rigid spacecraft. ISA Trans. 98, 263–270 (2020). https://doi.org/10.1016/j.isatra.2019.08.026

    Article  Google Scholar 

  10. Zou, A., Kumar, K., Ruiter, A.: Fixed-time attitude tracking control for rigid spacecraft. Automatica 113, 108792 (2020). https://doi.org/10.1016/j.automatica.2019.108792

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Y., Jia, Y.: Robust adaptive fixed-time tracking control of 6-DOF spacecraft fly-around mission for noncooperative target. Int. J. Robust Nonlinear Control 28, 2598–2618 (2018). https://doi.org/10.1002/rnc.4038

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang, B., Hu, Q., Friswell, M.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016). https://doi.org/10.1109/TCST.2016.2519838

    Article  Google Scholar 

  13. Gao, J., Cai, Y.: Fixed-time control for spacecraft attitude tracking based on quaternion. Acta Astronaut. 115, 303–313 (2015). https://doi.org/10.1016/j.actaastro.2015.05.035

    Article  Google Scholar 

  14. Zhu, W., Zong, Q., Tian, B., et al.: Disturbance observer-based active vibration suppression and attitude control for flexible spacecraft. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–9 (2020). https://doi.org/10.1109/TSMC.2020.3010518

    Article  Google Scholar 

  15. Esmaeilzadeh, S.M., Golestani, M., Mobayen, S.: Chattering-free fault-tolerant attitude control with fast fixed-time convergence for flexible spacecraft. Int. J. Control Autom. Syst. 19(2), 767–776 (2020). https://doi.org/10.1007/s12555-020-0043-3

    Article  Google Scholar 

  16. Cao, L., Xiao, B., Golestani, M., et al.: Faster fixed-time control of flexible spacecraft attitude stabilization. IEEE Trans. Industr. Inf. 16(2), 1281–1290 (2020). https://doi.org/10.1109/TII.2019.2949588

    Article  Google Scholar 

  17. Miao, Y., Hwang, I., Liu, M., et al.: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage. Aerosp. Sci. Technol. 93, 105312 (2019). https://doi.org/10.1016/j.ast.2019.105312

    Article  Google Scholar 

  18. Zhang, X., Zong, Q., Tian, B., et al.: Continuous robust fault-tolerant control and vibration suppression for flexible spacecraft without angular velocity. Int. J. Robust Nonlinear Control 29, 3915–3935 (2019). https://doi.org/10.1002/rnc.4584

    Article  MathSciNet  MATH  Google Scholar 

  19. Huo, J., Meng, T., Song, R., et al.: Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages. Acta Astronaut. 152, 557–566 (2018). https://doi.org/10.1016/j.actaastro.2018.05.046

    Article  Google Scholar 

  20. Fonseca, I., Rade, D., Goes, L., et al.: Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators. Acta Astronaut. 139, 357–366 (2017). https://doi.org/10.1016/j.actaastro.2017.07.018

    Article  Google Scholar 

  21. Chak, Y., Varatharajoo, R., Razoumny, Y.: Disturbance observer-based fuzzy control for flexible spacecraft combined attitude & sun tracking system. Acta Astronaut. 133, 302–310 (2017). https://doi.org/10.1016/j.actaastro.2016.12.028

    Article  Google Scholar 

  22. Wang, Z., Wu, Z.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. (2), 257–264 (2015). https://doi.org/10.1007/s11071-015-1987-3

  23. Xiao, B., Hu, Q., Ma, G.: Adaptive sliding mode backstepping control for attitude tracking of flexible spacecraft under input saturation and singularity. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 224(2), 199–214 (2010). https://doi.org/10.1243/09544100JAERO668

    Article  Google Scholar 

  24. Zhao, Z., Guo, B.: A nonlinear extended state observer based on fractional power functions. Automatica 81, 286–296 (2017). https://doi.org/10.1016/j.automatica.2017.03.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, T., Huang, C., Guo, L.: Control of uncertain nonlinear systems based on observers and estimators. Automatica 59, 35–47 (2015). https://doi.org/10.1016/j.automatica.2015.06.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, D., Xia, Y.: Practical fixed-time disturbance rejection control for quadrotor attitude tracking. IEEE Trans. Industr. Electron. 68(8), 7274–7283 (2020). https://doi.org/10.1109/TIE.2020.3001800

    Article  Google Scholar 

  27. Bing, X., Shen, Y., Kaynak, O.: Attitude stabilization control of flexible satellites with high accuracy: an estimator-based approach. IEEE/ASME Trans. Mech. 22(1), 349–358 (2017). https://doi.org/10.1109/TMECH.2016.2614839

    Article  Google Scholar 

  28. Li, B., Hu, Q., Ma, G.: Extended state observer based robust attitude control of spacecraft with input saturation. Aerosp. Sci. Technol. 50, 173–182 (2016). https://doi.org/10.1016/j.ast.2015.12.031

    Article  Google Scholar 

  29. Bhat, S., Bernstein, D.: Geometric homogeneity with applications to finite-time stability. Math. Control Sig. Syst. 17, 101–127 (2005). https://doi.org/10.1007/s00498-005-0151-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Khalil, H.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingmin Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Jia, Y. (2022). Robust Fixed-Time Attitude Stabilization of Flexible Spacecraft via Active Disturbance Rejection Method. In: Jia, Y., Zhang, W., Fu, Y., Yu, Z., Zheng, S. (eds) Proceedings of 2021 Chinese Intelligent Systems Conference. Lecture Notes in Electrical Engineering, vol 805. Springer, Singapore. https://doi.org/10.1007/978-981-16-6320-8_84

Download citation

Publish with us

Policies and ethics