Skip to main content

Intelligent Methods for Power System Analysis: Advancement in Optimization and Its Application

  • Chapter
  • First Online:
Intelligent Data Analytics for Power and Energy Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 802))

  • 667 Accesses

Abstract

Optimization problems often entail scenarios wherein the user's purpose is to decrease and/or maximize not a single but multiple, usually conflicting, objective functions simultaneously. Optimization problems often arise in real-world situation concerning engineering and design, chemical operation, and so forth. In this scenario, attaining an optimum for one goal/objective function necessitates certain compromises on one or more of the others and in such cases, we will end up with a collection of equally good solutions rather than just one in such issues. It is usually hard to address the multi-objective optimization problems since its optimal goals are frequently discordant. From a mathematical standpoint, finding an optimal solution that meets all objectives is troublesome and problematic. The chapter begins with a brief history of global optimization. The combined influence of innovative ideas and challenging applications has led to the establishment/formation of multi-objective optimization techniques. The emerging methods are predicated upon evolutionary algorithms that were inspired by nature. This also contributes to the study of numerous optimization challenges and the development/advancement of multiple cutting-edge intelligent algorithms in the effort of power system analysis. Furthermore, we provide an outline of multiple intelligent and advanced optimization methods used in different perspective and its application to electrical engineering among other goals. Finally, a comprehensive assessment of current challenges in the multi-objective optimization problem is provided, as well as ideas or direction for future research. The chapter is intended for readers (students, researchers or any), who wish to acquire the foundation or basic knowledge about the conceptual fundamentals of optimization as well as cutting-edge methodologies of evolutionary multi-objective optimization. The vision is to offer a general framework for research in this vibrant field, as well as to assist the advanced researchers and scholars in identifying untapped research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y.R. Sood, M. Hasmat, A. Ahmad, S. Srivastava, Applications of Artificial Intelligence Techniques in Engineering—volume1: Part of the Advances in Intelligent Systems and Computing (Springer, Berlin, 2018). https://doi.org/10.1007/978-981-13-1819-1

  2. Y.R. Sood, M. Hasmat, A. Ahmad, S. Srivastava, Applications of Artificial Intelligence Techniques in Engineering—volume2: Part of the Advances in Intelligent Systems and Computing (Springer, Berlin, 2018). https://doi.org/10.1007/978-981-13-1822-1

  3. H. Malik, A.K. Yadav, A. Iqbal, Soft Computing in Condition Monitoring and Diagnostics of Electrical and Mechanical Systems: Part of the Advances in Intelligent Systems and Computing (Springer, Berlin, 2020). https://doi.org/10.1007/978-981-15-1532-3

  4. R.T. Marler, J.S. Arora, Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. Optim. 26(6) (2004). https://doi.org/10.1007/s00158-003-0368-6

  5. Ó. Gonzales-Zurita, J.-M. Clairand, E. Peñalvo-López, G. Escrivá-Escrivá, Review on multi-objective control strategies for distributed generation on inverter-based microgrids. Integr. Manage. Distrib. Energy Resour. Power Syst. Energies 13, 3483 (2020). https://doi.org/10.3390/en13133483

  6. H. Malik, S. Bayhan, K. Abdellah, A. Riyaz, A. Iqbal, Renewable Power for Sustainable Growth: Part of the Lecture Notes in Electrical Engineering (Springer, Berlin, 2020). https://doi.org/10.1007/978-981-33-4080-0

  7. H. Malik, A. Iqbal, N. Fatema, Intelligent Data-Analytics for Condition Monitoring: Smart Grid Applications (Elsevier, Amsterdam, 2021). https://doi.org/10.1016/C2020-0-02173-0

  8. G.P. Rangaiah, A.F. Hoadley, Z. Feng, Multi-objective optimization applications in chemical process engineering: tutorial and review. Processes 8, 508 (2020). https://doi.org/10.3390/pr8050508

  9. Y. Cui, Y. Han, Q. Zhu, Z. Geng, Multi-objective optimization methods and application in energy saving. Energy 125, 681 (2017) https://doi.org/10.1016/j.energy.2017.02.174

  10. E. Zitzler, Evolutionary algorithms for multiobjective optimization: methods and applications (1999). https://doi.org/10.3929/ethz-a-003856832

  11. J. Horn, Evolutionary Computation Applications. F1. 9. Multicriterion Decision Making, in Handbook of Evolutionary Computation (1997)

    Google Scholar 

  12. R.E. Steuer, Multiple criteria optimization. Theor Comput Appl (1986). https://doi.org/10.1002/oca.4660100109

    Article  MATH  Google Scholar 

  13. C.L. Hwang, A.S. Md. Masud, Methods for Multiple Objective Decision Making (Springer, Berlin, 1979). https://doi.org/10.1007/978-3-642-45511-7_3

  14. L. Haimes, Y. Yacov, On a-Bicriterion-Formulation-of the-Problems of-Integrated System Identification and System Optimization. (IEEE 1971). https://doi.org/10.1109/TSMC.1971.4308298

  15. F. Wang, L. Zhang, Q. Tang, X. He, Y. Rao, Fast construction method of Pareto non-dominated solution for multi-objective decision-making problem (2016)

    Google Scholar 

  16. B. Jürgen, S. Roman, K. Miettinen, K. Deb, Multiobjective Optimization: Interactive and Evolutionary Approaches (Springer, Berlin, 2008)

    Google Scholar 

  17. K. Miettinen, Nonlinear Multiobjective Optimization (Springer, Berlin, 2012)

    Google Scholar 

  18. I. Das, J.E. Dennis, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. (1998) https://doi.org/10.1137/S1052623496307510

  19. I.-Y. Amir, A. Messac, A. Mattson Christopher, The normalized normal constraint method for generating the Pareto frontier. Struct. Multidiscip. Optim. (2003)

    Google Scholar 

  20. J.F. Van Impe., P.M.M. Van Erdeghem, F. Logist, Efficient deterministic multiple objective optimal control of (bio) chemical processes. Chem. Eng. Sci. (2009)

    Google Scholar 

  21. S. Olariu, A.Y. Zomaya, Biology-derived algorithms in engineering optimization, in Handbook of Bioinspired Algorithms and Applications (2005)

    Google Scholar 

  22. F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a literature review. Swarm Evolut. Comput. (2012)

    Google Scholar 

  23. A.A. Nikolaus, D.V. Arnold, Hansen, Evolution strategies, in Springer Handbook of Computational Intelligence (2015)

    Google Scholar 

  24. H.-P. Schwefel, B. Thomas, An overview of evolutionary algorithms for parameter optimization. Evolut. Comput. (1993)

    Google Scholar 

  25. J.W. Michael, A.J. Fogel, O. Lawrence, Intelligent decision making through simulation of evolution. Behav. Sci. (1966)

    Google Scholar 

  26. D. Jia, G. Zheng, M.K. Khan. An effective memetic differential evolution algorithm based on chaotic local search. Inform. Sci. 181(15), 3175–3187 (2011)

    Google Scholar 

  27. Y. Wang, et al., Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Appl. Soft. Comput. (2010)

    Google Scholar 

  28. L. Li, L. Wang, An effective differential harmony search algorithm for the solving non-convex economic load dispatch problems. Int. J. Electr. Power Energy Syst. (2013)

    Google Scholar 

  29. S. Deb, X.-S. Yang, Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. (2010)

    Google Scholar 

  30. K. Dervis, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. (2008)

    Google Scholar 

  31. A. Iqbal, et al., Metaheuristic and Evolutionary Computation: Algorithms and Applications (Springer Nature, Part of the Studies in Computational Intelligence, 2020). https://doi.org/10.1007/978-981-15-7571-6

  32. T.-H. Huynh, A Modified Shuffled Frog Leaping Algorithm for Optimal Tuning of Multivariable PID Controllers (IEEE, 2008)

    Google Scholar 

  33. X.-S. Yang, Firefly Algorithms for multimodal optimization, in International Symposium on Stochastic Algorithms (Springer, Berlin, 2009)

    Google Scholar 

  34. S. Salcedo-Sanz, J. Del Ser, I. Landa-Torres, S. Gil-López, J.A. Portilla-Figueras, The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci. World J. (2014)

    Google Scholar 

  35. K.M. Passino, Bacterial foraging optimization. Int. J. Swarm Intel. Res. (IJSIR) 1(no. 1), 1–16 (2010)

    Google Scholar 

  36. H. Duan, P. Qiao, Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning. Int. J. Intel. Comput. Cybern. 7, 24–37 (2014)

    Google Scholar 

  37. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, 1999)

    Google Scholar 

  38. M.M. Millonas, Swarms, Phase Transitions, and Collective Intelligence (1993)

    Google Scholar 

  39. E. Russel, J. Kennedy, Particle Swarm Optimization. ICNN’95 (IEEE, 1995)

    Google Scholar 

  40. E. Russell, J. Kennedy, A new optimizer using particle swarm theory, in MHS'95 (IEEE 1995)

    Google Scholar 

  41. X. Li, A non-dominated sorting particle swarm optimizer for multi-objective optimization, in Genetic and Evolutionary Computation Conference (Springer, Berlin, 2003)

    Google Scholar 

  42. M. Salazar Lechuga, G.T. Pulido, C.A. Coello, Handling Multiple Objectives with Particle Swarm Optimization (IEEE 2004)

    Google Scholar 

  43. D.P. Vakharia, R.R. Venkata, V.J. Savsani, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. (2011)

    Google Scholar 

  44. H. Hosseinpour, M. Jabbari, T. Niknam, Multi-objective fuzzy adaptive PSO for placement of AVRs considering DGs, in Power Engineering and Automation Conference ’11 (IEEE, 2011)

    Google Scholar 

  45. T. Niknam, A. Kavousi Fard, A. Baziar, Multi-objective stochastic distribution feeder reconfiguration problem considering hydrogen and thermal energy production by fuel cell power plants. Energy (2012)

    Google Scholar 

  46. J.A. Martín García, A.J. Gil Mena, Optimal distributed generation location and size using a modified teaching–learning based optimization algorithm. Int. J. Electr. Power Energy Syst. (2013)

    Google Scholar 

  47. D. Dasgupta, An Overview of Artificial Immune Systems and Their Applications (1993)

    Google Scholar 

  48. N.C. Cortés, C.A. Coello, Solving multiobjective optimization problems using an artificial immune system, in Genetic Programming and Evolvable Machines (2005)

    Google Scholar 

  49. M. Gong, L. Jiao, D. Haifeng, L. Bo, Multi Objective immune algorithm with nondominated neighbor-based selection. Evol. Comput. 16(2), 225–255 (2008)

    Article  Google Scholar 

  50. M. Tayarani, R. Akbarzadeh, H. Mohammad, Magnetic optimization algorithms a new synthesis, in IEEE World Congress on CI’08 (IEEE, 2008)

    Google Scholar 

  51. E. Rashedi, H. Nezamabadi-Pour, S. Saeid, GSA: a gravitational search algorithm. Inform. Sci. (2009)

    Google Scholar 

  52. R. Esmat, H. Nezamabadi-Pour, S. Saeid, Filter modeling using gravitational search algorithm. Eng. Appl. Artif. Intel. (2011)

    Google Scholar 

  53. S.-H. Hamed, Optimization with the nature-inspired intelligent water drops algorithm. Evolut. Comput. (2009)

    Google Scholar 

  54. S. Kirkpatrick, C. Daniel Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983)

    Google Scholar 

  55. S.S. Sanghamitra, U.M. Bandyopadhyay, K. Deb, A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evolut. Comput. (2008)

    Google Scholar 

  56. E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, in IEEE Congress on Evolutionary Computation’07 (IEEE 2007)

    Google Scholar 

  57. F. Glover, Heuristics for integer programming using surrogate constraints. Decis. Sci. (1977)

    Google Scholar 

  58. F. Glover, T. Eric, A User's Guide to Tabu Search. Ann. Oper. Res. (1993)

    Google Scholar 

  59. M. Pablo, On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms, in Caltech Concurrent Computation Program (1989)

    Google Scholar 

  60. R.G. Reynolds, An introduction to cultural algorithms, in Proceedings of the Third Annual Conference on Evolutionary Programming (World Scientific, NJ, 1994)

    Google Scholar 

  61. T.Y. Lin, Granular computing on binary relations II: rough set representations and belief functions. Rough Sets Knowl. Discover. 1 (1998)

    Google Scholar 

  62. R. Picard, Affective Computing (Massachusetts Institute of Technology, Cambridge, 1997)

    Google Scholar 

  63. F. Corno, S.R. Matteo, S. Giovanni, The selfish gene algorithm: a new evolutionary optimization strategy, in Proceedings of ACM Symposium on Applied Computing’98 (1998)

    Google Scholar 

  64. Z.-L.Y. Xie, W.-J. Zhang, X. Feng, Social cognitive optimization for nonlinear programming problems, in Proceedings of International Conference on MLC’02 (IEEE, 2002)

    Google Scholar 

  65. E. Zitzler, M. Laumanns, L. Thiele, K. Deb, L. Marco, Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. (2002)

    Google Scholar 

  66. A.G. Hernndez-Daz, L.V. Santana-Quintero, C.A. Coello, J. Molina, Pareto-adaptive ϵ-dominance. Evol. Comput. (2007)

    Google Scholar 

  67. K. Deb, D.K. Saxena, On Finding Pareto-Optimal Solutions Through Dimensionality Reduction for Certain Large-Dimensional Multi-Objective Optimization Problems. Kangal Report (2005)

    Google Scholar 

  68. D.K. Saxena, K. Deb, Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding, in International Conference on EMCO’07 (Springer, 2007)

    Google Scholar 

  69. D. Brockhoff, E. Zitzler, Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization, in Parallel Problem Solving from Nature-PPSN IX (Springer, 2006)

    Google Scholar 

  70. Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. (2007)

    Google Scholar 

  71. M. Mlakar, D. Petelin, T. Tušar, B. Filipič, GP-DEMO: differential evolution for multiobjective optimization based on Gaussian process models. Eur. J. Oper. Res. (2015)

    Google Scholar 

  72. H. Gharavi, M.M. Ardehali, S. Ghanbari-Tichi, Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renew. Energy 78, 427–437 (2015)

    Google Scholar 

  73. Y. Teekaraman, R. Kuppusamy, S. Nikolovski, Solution for voltage and frequency regulation in standalone microgrid using hybrid multiobjective symbiotic organism search algorithm. Energies 12, 2812 (2019)

    Google Scholar 

  74. Z. Zeng, H. Li, S. Tang, Y. Huan, R. Zhao, Multi-objective control of multi-functional grid-connected inverter for renewable energy integration and power quality service. IET Power Electron. (2016)

    Google Scholar 

  75. Y. Wu, J.M. Guerrero, J.C. Vasquez, Y. Wu, Bumpless optimal control over multi-objective microgrids with mode-dependent controllers. Energies 12, 3619 (2019)

    Google Scholar 

  76. D.O. Amoateng, M.A. Hosani, M.S. Elmoursi, K. Turitsyn, J.L. Kirtley, Adaptive voltage and frequency control of islanded multi-microgrids. IEEE Trans. Power Syst. (2017)

    Google Scholar 

  77. E. Zio, R. Mena, M. Hennebel, Y.-F. Li, A multi-objective optimization framework for risk-controlled integration of renewable generation into electric power systems. Energy (2016)

    Google Scholar 

  78. A. Sopinka, L. Pitt. British Columbia electricity supply gap strategy: a redefinition of self-sufficiency. Electricity J. 26, 81–88 (2013)

    Google Scholar 

  79. X. Zhou, J. Tian, L. Chen, E. Dall'Anese, Local voltage control in distribution networks: Aigame-theoretic perspective, in NAPS’16 (IEEE, 2016)

    Google Scholar 

  80. A.K. Ramasamy, R. Mukerjee, V.K. Ramachandaramuthy, R. K. Iyer, Dynamic voltage restorer for voltage sag compensation. J. Power Qual. Res. Group (2005)

    Google Scholar 

  81. M.R. Khalghani, M. Ali Shamsi-nejad, M. Hassan Khooban. Dynamic voltage restorer control using bi-objective optimisation to improve power quality indices. IET Sci. Measure. Technol. (2014)

    Google Scholar 

  82. M. Ross, C. Abbey, F. Bouffard, G. Jos: Multiobjective optimization dispatch for microgrids with a high penetration of renewable generation. IEEE Trans. Sustain. Energy 6, 1306–1314 (2015)

    Google Scholar 

  83. H.R. Baghaee, M. Mirsalim, G.B. Gharehpetian, H.A. Talebi, Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system. Energy 115, 1022–1041 (2016)

    Article  Google Scholar 

  84. M. Sedighizadeh, A. Rezazadeh, R.V. Doyran, S.M. Mahdi Alavi, Optimal allocation of passive filters and inverter based DGs joint with optimal feeder reconfiguration to improve power quality in a harmonic polluted microgrid. Renew. Energy Focus (2020)

    Google Scholar 

  85. E.J. Agnoletto, D.S. De Castro, R.V. Neves, R.Q. Machado, V.A. Oliveira, An Optimal Energy Management Technique Using the Constraint Method for Grid-Tied and Stand-Alone Battery-Based Microgrids (IEEE, 2019)

    Google Scholar 

  86. A. Hamidi, D. Nazarpour, S. Golshannavaz, Multiobjective scheduling of microgrids to harvest higher photovoltaic energy. IEEE Trans. Industr. Inf. 14(1), 47–57 (2017)

    Article  Google Scholar 

  87. Z. Garroussi, R. Ellaia, J.-Y. Lucas, A metaheuristic for a bi-objective demand-side optimization for cooperative smart homes. Elect. Eng. (2020)

    Google Scholar 

  88. H.P. Geering, Optimal Control with Engineering Applications (Springer, 2007)

    Google Scholar 

  89. N.C. Ekneligoda, A.M. Dissanayake, Multiobjective optimization of droop-controlled distributed generators in DC microgrids. IEEE Trans. Indus. Inform. (2019)

    Google Scholar 

  90. D.I. Brandao, W.M. Ferreira, A.M.S. Alonso, E. Tedeschi, F.P. Marafão, Optimal multiobjective control of low-voltage AC microgrids: power flow regulation and compensation of reactive power and unbalance. IEEE Trans. Smart Grid (2019)

    Google Scholar 

  91. W.M. Ferreira, I.R. Meneghini, D.I. Brandao, F.G. Guimarães, Preference cone based multi-objective evolutionary algorithm to optimal management of distributed energy resources in microgrids. Appl. Energy 274, 115326 (2020)

    Google Scholar 

  92. M. Manas, Optimization of distributed generation based hybrid renewable energy system for a DC Micro-grid using particle swarm optimization. Distrib. Gener. Altern. Energy J. 33 (2018)

    Google Scholar 

  93. P.P. Vergara, R. Torquato, L.C.P. Da Silva, Towards a real-time energy management system for a microgrid using a multi-objective genetic algorithm, in Power & Energy Society General Meeting’15 (IEEE, 2015)

    Google Scholar 

  94. V.V.S.N. Murty, A. Kumar, Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protect. Control Modern Power Syst. (2020)

    Google Scholar 

  95. J. Lai, C. Hu, G. Li, X. Lu, H. Zhou, Networked-based distributed cooperative voltage control for power electronics interfaced microgrids, in ICIEA’16 (IEEE, 2016)

    Google Scholar 

  96. B. Ye, X. Shi, X. Wang, H. Wu, Optimisation configuration of hybrid AC/DC microgrid containing electric vehicles based on the NSGA-II algorithm. J. Eng. (2019)

    Google Scholar 

  97. F. Zhao, J. Yuan, N. Wang, Dynamic economic dispatch model of microgrid containing energy storage components based on a variant of NSGA-II algorithm. Energies 12, 871 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huiningsumbam, U., Mani, A., Jain, A. (2022). Intelligent Methods for Power System Analysis: Advancement in Optimization and Its Application. In: Malik, H., Ahmad, M.W., Kothari, D. (eds) Intelligent Data Analytics for Power and Energy Systems. Lecture Notes in Electrical Engineering, vol 802. Springer, Singapore. https://doi.org/10.1007/978-981-16-6081-8_13

Download citation

Publish with us

Policies and ethics