Skip to main content

The Potential of Stem Cells in Ocular Treatments

  • Living reference work entry
  • First Online:
Handbook of Stem Cell Therapy

Abstract

Although conventional treatment strategies of drug administration and surgical intervention have been successful in protecting vision loss, however these efforts have been unable to discover a comprehensive approach to prevent the progression of disease in many ocular disorders. In this context, stem cell-based therapies provide an alternative approach to prevent vision loss in instances where conventional treatments have failed. The immune-privileged status and easy accessibility of different tissue of the eye offers several advantages for stem-cell-based therapeutic intervention. The pluripotent stem cells have been used to generate multiple eye cell types including corneal epithelial- and endothelial-cells, retinal pigment-epithelial cells, photoreceptors, retinal ganglion cells, and lens, conjunctival, limbal, and trabecular meshwork cells. Multiple pluripotent stem cell-based clinical trials for the treatment of a wide range of eye diseases are in progress. In this chapter, we review the potential of pluripotent stem cell-derived cells of multiple eye tissues to prevent vision loss by replacing the degenerative cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMD:

Age-related macular degeneration

BL:

Bowman’s layer

CE:

Corneal endothelium

DM:

Descemet’s membrane

ESCs:

Embryonic stem cells

iPSCs:

Induced pluripotent stem cells

RGCs:

Retinal ganglion cells

RP:

Retinitis pigmentosa

SEAM:

Self-formed ectodermal autonomous multizone

References

  • Abe T, Yoshida M, Tomita H, Kano T, Nakagawa Y, Sato M, Wada Y et al (1999) Functional analysis after auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration. Tohoku J Exp Med 189:295–305

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Tomita H, Kano T, Yoshida M, Ohashi T, Nakamura Y, Nishikawa S et al (2000a) Autologous iris pigment epithelial cell transplantation in monkey subretinal region. Curr Eye Res 20:268–275

    Article  CAS  PubMed  Google Scholar 

  • Abe T, Yoshida M, Tomita H, Kano T, Sato M, Wada Y, Fuse N et al (2000b) Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration: short-term results. Tohoku J Exp Med 191:7–20

    Article  CAS  PubMed  Google Scholar 

  • Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ (2015) Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33:751–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acott TS, Samples JR, Bradley JM, Bacon DR, Bylsma SS, Van Buskirk EM (1989) Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol 107:1–6

    Article  CAS  PubMed  Google Scholar 

  • Aisenbrey S, Lafaut BA, Szurman P, Hilgers RD, Esser P, Walter P, Bartz-Schmidt KU et al (2006) Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch Ophthalmol 124:183–188

    Article  PubMed  Google Scholar 

  • Alexander RA, Grierson I (1989) Morphological effects of argon laser trabeculoplasty upon the glaucomatous human meshwork. Eye (Lond) 3(Pt 6):719–726

    Article  Google Scholar 

  • Ali M, Kabir F, Thomson JJ, Ma Y, Qiu C, Delannoy M, Khan SY et al (2019) Comparative transcriptome analysis of hESC- and iPSC-derived lentoid bodies. Sci Rep 9:18552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali M, Kabir F, Raskar S, Renuse S, Na CH, Delannoy M, Khan SY et al (2020) Generation and proteome profiling of PBMC-originated, iPSC-derived lentoid bodies. Stem Cell Res 46:101813

    Article  CAS  PubMed  Google Scholar 

  • Ali M, Khan SY, Gottsch JD, Hutchinson EK, Khan A, Riazuddin SA (2021) Pluripotent stem cell-derived corneal endothelial cells as an alternative to donor corneal endothelium in keratoplasty. Stem Cell Rep 16:2320–2335

    Article  Google Scholar 

  • Alvarado J, Murphy C, Polansky J, Juster R (1981) Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci 21:714–727

    CAS  PubMed  Google Scholar 

  • Alvarado J, Murphy C, Juster R (1984) Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 91:564–579

    Article  CAS  PubMed  Google Scholar 

  • Assawachananont J, Mandai M, Okamoto S, Yamada C, Eiraku M, Yonemura S, Sasai Y et al (2014) Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep 2:662–674

    Article  Google Scholar 

  • Banin E, Obolensky A, Idelson M, Hemo I, Reinhardtz E, Pikarsky E, Ben-Hur T et al (2006) Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24:246–257

    Article  PubMed  Google Scholar 

  • Barbosa-Sabanero K, Hoffmann A, Judge C, Lightcap N, Tsonis PA, Del Rio-Tsonis K (2012) Lens and retina regeneration: new perspectives from model organisms. Biochem J 447:321–334

    Article  CAS  PubMed  Google Scholar 

  • Bassuk AG, Zheng A, Li Y, Tsang SH, Mahajan VB (2016) Precision medicine: genetic repair of retinitis pigmentosa in patient-derived stem cells. Sci Rep 6:19969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu S, Hertsenberg AJ, Funderburgh ML, Burrow MK, Mann MM, Du Y, Lathrop KL et al (2014) Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci Transl Med 6:266ra172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA (2007) Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J Neurosci 27:7028–7040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berson EL (1993) Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci 34:1659–1676

    CAS  PubMed  Google Scholar 

  • Blenkinsop TA, Saini JS, Maminishkis A, Bharti K, Wan Q, Banzon T, Lotfi M et al (2015) Human adult retinal pigment epithelial stem cell-derived RPE monolayers exhibit key physiological characteristics of native tissue. Invest Ophthalmol Vis Sci 56:7085–7099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonanno JA (2012) Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res 95:2–7

    Article  CAS  PubMed  Google Scholar 

  • Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO (2009) Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27:2427–2434

    Article  CAS  PubMed  Google Scholar 

  • Buller C, Johnson DH, Tschumper RC (1990) Human trabecular meshwork phagocytosis. Observations in an organ culture system. Invest Ophthalmol Vis Sci 31:2156–2163

    CAS  PubMed  Google Scholar 

  • Buznyk O, Pasyechnikova N, Islam MM, Iakymenko S, Fagerholm P, Griffith M (2015) Bioengineered corneas grafted as alternatives to human donor corneas in three high-risk patients. Clin Transl Sci 8:558–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, Chen LL, Buchholz DE et al (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4:e8152

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen M, Tian S, Glasgow NG, Gibson G, Yang X, Shiber CE, Funderburgh J et al (2015) Lgr5+ amacrine cells possess regenerative potential in the retina of adult mice. Aging Cell 14:635–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang K, Fields MA, Del Priore LV (2017) Potential of gene editing and induced pluripotent stem cells (iPSCs) in treatment of retinal diseases. Yale J Biol Med 90:635–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crafoord S, Geng L, Seregard S, Algvere PV (2002) Photoreceptor survival in transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmol Scand 80:387–394

    Article  PubMed  Google Scholar 

  • Daniels JT, Notara M, Shortt AJ, Secker G, Harris A, Tuft SJ (2007) Limbal epithelial stem cell therapy. Expert Opin Biol Ther 7:1–3

    Article  CAS  PubMed  Google Scholar 

  • Davis BM, Crawley L, Pahlitzsch M, Javaid F, Cordeiro MF (2016a) Glaucoma: the retina and beyond. Acta Neuropathol 132:807–826

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis RJ, Blenkinsop TA, Campbell M, Borden SM, Charniga CJ, Lederman PL, Frye AM et al (2016b) Human RPE stem cell-derived RPE preserves photoreceptors in the Royal College of surgeons rat: method for quantifying the area of photoreceptor sparing. J Ocul Pharmacol Ther 32:304–309

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ, Alam NM, Zhao C, Müller C, Saini JS, Blenkinsop TA, Mazzoni F et al (2017) The developmental stage of adult human stem cell-derived retinal pigment epithelium cells influences transplant efficacy for vision rescue. Stem Cell Rep 9:42–49

    Article  CAS  Google Scholar 

  • Dawson DG, Ubels JL, Edelhauser HF (2011) Cornea and sclera. In: Adler’s physiology of the eye, 11th edn. Elsevier, New York, pp 71–130

    Chapter  Google Scholar 

  • de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355:1474–1485

    Article  PubMed  Google Scholar 

  • Delmonte DW, Kim T (2011) Anatomy and physiology of the cornea. J Cataract Refract Surg 37:588–598

    Article  PubMed  Google Scholar 

  • Ding QJ, Zhu W, Cook AC, Anfinson KR, Tucker BA, Kuehn MH (2014) Induction of trabecular meshwork cells from induced pluripotent stem cells. Invest Ophthalmol Vis Sci 55:7065–7072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiStefano T, Chen HY, Panebianco C, Kaya KD, Brooks MJ, Gieser L, Morgan NY et al (2018) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep 10:300–313

    Article  CAS  Google Scholar 

  • Du Y, Roh DS, Mann MM, Funderburgh ML, Funderburgh JL, Schuman JS (2012) Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci 53:1566–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Yun H, Yang E, Schuman JS (2013) Stem cells from trabecular meshwork home to TM tissue in vivo. Invest Ophthalmol Vis Sci 54:1450–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua HS, Joseph A, Shanmuganathan VA, Jones RE (2003) Stem cell differentiation and the effects of deficiency. Eye 17:877–885

    Article  CAS  PubMed  Google Scholar 

  • Dueker DK, Norberg M, Johnson DH, Tschumper RC, Feeney-Burns L (1990) Stimulation of cell division by argon and Nd:YAG laser trabeculoplasty in cynomolgus monkeys. Invest Ophthalmol Vis Sci 31:115–124

    CAS  PubMed  Google Scholar 

  • Dyer MA, Cepko CL (2000) Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci 3:873–880

    Article  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    Article  CAS  PubMed  Google Scholar 

  • Fausett BV, Goldman D (2006) A role for α1 tubulin-expressing Müller glia in regeneration of the injured zebrafish retina. J Neurosci 26:6303–6313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino SF, Parmeggiani F (2011) Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics 12:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer AJ, Reh TA (2001) Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 4:247–252

    Article  CAS  PubMed  Google Scholar 

  • Freegard TJ (1997) The physical basis of transparency of the normal cornea. Eye 11:465–471

    Article  PubMed  Google Scholar 

  • Fu Q, Qin Z, Jin X, Zhang L, Chen Z, He J, Ji J et al (2017a) Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells. Invest Ophthalmol Vis Sci 58:517–527

    Article  PubMed  Google Scholar 

  • Fu Q, Qin Z, Jin X, Zhang L, Chen Z, He J, Ji J et al (2017b) Generation of functional lentoid bodies from human induced pluripotent stem cells derived from urinary cells. Invest Ophthalmol Vis Sci 58:517–527

    Article  PubMed  Google Scholar 

  • Fukuta M, Nakai Y, Kirino K, Nakagawa M, Sekiguchi K, Nagata S, Matsumoto Y et al (2014) Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 9:e112291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G (2016) Global survey of corneal transplantation and eye banking. JAMA Ophthalmol 134:167–173

    Article  PubMed  Google Scholar 

  • Gomes JA, Santos MS, Ventura AS, Donato WB, Cunha MC, Höfling-Lima AL (2003) Amniotic membrane with living related corneal limbal/conjunctival allograft for ocular surface reconstruction in Stevens-Johnson syndrome. Arch Ophthalmol 121:1369–1374

    Article  PubMed  Google Scholar 

  • Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A et al (2013) Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 31:741–747

    Article  CAS  PubMed  Google Scholar 

  • Gwon A (2006) Lens regeneration in mammals: a review. Surv Ophthalmol 51:51–62

    Article  PubMed  Google Scholar 

  • Gwon AE, Gruber LJ, Mundwiler KE (1990) A histologic study of lens regeneration in aphakic rabbits. Invest Ophthalmol Vis Sci 31:540–547

    CAS  PubMed  Google Scholar 

  • Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, Tsujikawa M et al (2012) Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 7:e45435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, Araki S et al (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531:376–380

    Article  CAS  PubMed  Google Scholar 

  • Hertsenberg AJ, Funderburgh JL (2016) Generation of corneal keratocytes from human embryonic stem cells. Methods Mol Biol 1341:285–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirami Y, Osakada F, Takahashi K, Okita K, Yamanaka S, Ikeda H, Yoshimura N et al (2009) Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett 458:126–131

    Article  CAS  PubMed  Google Scholar 

  • Homma R, Yoshikawa H, Takeno M, Kurokawa MS, Masuda C, Takada E, Tsubota K et al (2004) Induction of epithelial progenitors in vitro from mouse embryonic stem cells and application for reconstruction of damaged cornea in mice. Invest Ophthalmol Vis Sci 45:4320–4326

    Article  PubMed  Google Scholar 

  • Homma K, Okamoto S, Mandai M, Gotoh N, Rajasimha HK, Chang YS, Chen S et al (2013) Developing rods transplanted into the degenerating retina of Crx-knockout mice exhibit neural activity similar to native photoreceptors. Stem Cells 31:1149–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung SSC, McCaughey T, Swann O, Pébay A, Hewitt AW (2016) Genome engineering in ophthalmology: application of CRISPR/Cas to the treatment of eye disease. Prog Retin Eye Res 53:1–20

    Article  CAS  PubMed  Google Scholar 

  • Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H et al (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5:396–408

    Article  CAS  PubMed  Google Scholar 

  • Ilari L, Daya SM (2002) Long-term outcomes of keratolimbal allograft for the treatment of severe ocular surface disorders. Ophthalmology 109:1278–1284

    Article  PubMed  Google Scholar 

  • Jayaram H, Jones MF, Eastlake K, Cottrill PB, Becker S, Wiseman J, Khaw PT et al (2014) Transplantation of photoreceptors derived from human Muller glia restore rod function in the P23H rat. Stem Cells Transl Med 3:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MK, Lu B, Girman S, Wang S (2017) Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 58:1–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kador KE, Montero RB, Venugopalan P, Hertz J, Zindell AN, Valenzuela DA, Uddin MS et al (2013) Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials 34:4242–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman PL, Rasmussen CA (2012) Advances in glaucoma treatment and management: outflow drugs. Invest Ophthalmol Vis Sci 53:2495–2500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon KR, Tseng SC (1989) Limbal autograft transplantation for ocular surface disorders. Ophthalmology 96:709–722; discussion 22–23

    Article  CAS  PubMed  Google Scholar 

  • Kimbrel EA, Lanza R (2015) Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov 14:681–692

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita S, Koizumi N, Ueno M, Okumura N, Imai K, Tanaka H, Yamamoto Y et al (2018) Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med 378:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–245

    Article  CAS  PubMed  Google Scholar 

  • Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ (2009) The architecture of the cornea and structural basis of its transparency. Adv Protein Chem Struct Biol 78:25–49

    Article  CAS  PubMed  Google Scholar 

  • Lamba DA, Karl MO, Ware CB, Reh TA (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103:12769–12774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamba DA, Gust J, Reh TA (2009) Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lappas A, Weinberger AW, Foerster AM, Kube T, Rezai KA, Kirchhof B (2000) Iris pigment epithelial cell translocation in exudative age-related macular degeneration. A pilot study in patients. Graefes Arch Clin Exp Ophthalmol 238:631–641

    Article  CAS  PubMed  Google Scholar 

  • Lappas A, Foerster AM, Weinberger AW, Coburger S, Schrage NF, Kirchhof B (2004) Translocation of iris pigment epithelium in patients with exudative age-related macular degeneration: long-term results. Graefes Arch Clin Exp Ophthalmol 242:638–647

    Article  PubMed  Google Scholar 

  • Lenkowski JR, Raymond PA (2014) Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res 40:94–123

    Article  PubMed  Google Scholar 

  • Li Y, Tsai YT, Hsu CW, Erol D, Yang J, Wu WH, Davis RJ et al (2012) Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 18:1312–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Qiu X, Yang J, Liu T, Luo Y, Lu Y (2016) Generation of human lens epithelial-like cells from patient-specific induced pluripotent stem cells. J Cell Physiol 231:2555–2562

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G et al (2016) Lens regeneration using endogenous stem cells with gain of visual function. Nature 531:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lois N, Taylor J, McKinnon AD, Forrester JV (2005) Posterior capsule opacification in mice. Arch Ophthalmol 123:71–77

    Article  PubMed  Google Scholar 

  • Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F et al (1989) Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci 30:586–588

    CAS  PubMed  Google Scholar 

  • Lorenzetti DWC, Uotila MH, Parikh N, Kaufman HE (1967) Central cornea guttata: incidence in the general population. Am J Ophthalmol 64:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R, Lu B, Girman S et al (2006) Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells 8:189–199

    Article  CAS  PubMed  Google Scholar 

  • MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, Swaroop A et al (2006) Retinal repair by transplantation of photoreceptor precursors. Nature 444:203–207

    Article  CAS  PubMed  Google Scholar 

  • Maekawa Y, Onishi A, Matsushita K, Koide N, Mandai M, Suzuma K, Kitaoka T et al (2016) Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 41:558–568

    CAS  PubMed  Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M et al (2017) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • Manuguerra-Gagné R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, Lesk MR et al (2013) Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells 31:1136–1148

    Article  PubMed  CAS  Google Scholar 

  • Maurice DM (1957) The structure and transparency of the cornea. J Physiol 136:263–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe KL, Kunzevitzky NJ, Chiswell BP, Xia X, Goldberg JL, Lanza R (2015) Efficient generation of human embryonic stem cell-derived corneal endothelial cells by directed differentiation. PLoS One 10:e0145266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DH, Lako M (2012) Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 30:673–686

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106:16698–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitashov VI (1996) Mechanisms of retina regeneration in urodeles. Int J Dev Biol 40:833–844

    CAS  PubMed  Google Scholar 

  • Murphy P, Kabir MH, Srivastava T, Mason ME, Dewi CU, Lim S, Yang A et al (2018) Light-focusing human micro-lenses generated from pluripotent stem cells model lens development and drug-induced cataract in vitro. Development 145:dev155838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785

    Article  CAS  PubMed  Google Scholar 

  • Nishida T, Saika S, Morishige N (2010) Cornea and sclera: anatomy and physiology. Cornea 1:1–22

    Google Scholar 

  • O’Connor MD, McAvoy JW (2007) In vitro generation of functional lens-like structures with relevance to age-related nuclear cataract. Invest Ophthalmol Vis Sci 48:1245–1252

    Article  PubMed  Google Scholar 

  • O’Sullivan F, Clynes M (2007) Limbal stem cells, a review of their identification and culture for clinical use. Cytotechnology 53:101–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Okumura N, Ueno M, Koizumi N, Sakamoto Y, Hirata K, Hamuro J, Kinoshita S (2009) Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci 50:3680–3687

    Article  PubMed  Google Scholar 

  • Okumura N, Sakamoto Y, Fujii K, Kitano J, Nakano S, Tsujimoto Y, Nakamura S et al (2016) Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep 6:26113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva MS, Schottman T, Gulati M (2012) Turning the tide of corneal blindness. Indian J Ophthalmol 60:423

    Article  PubMed  PubMed Central  Google Scholar 

  • Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A et al (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26:215–224

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y et al (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  CAS  PubMed  Google Scholar 

  • Pan SH, Zhao N, Feng X, Jie Y, Jin ZB (2021) Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Sci Adv 7:eabg5749

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson C, Martin K (2015) Stem cell approaches to glaucoma: from aqueous outflow modulation to retinal neuroprotection. Prog Brain Res 220:241–256

    Article  PubMed  Google Scholar 

  • Peh GS, Adnan K, George BL, Ang HP, Seah XY, Tan DT, Mehta JS (2015) The effects of rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep 5:9167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M (1997) Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet 349:990–993

    Article  CAS  PubMed  Google Scholar 

  • Peng YQ, Tang LS, Yoshida S, Zhou YD (2017) Applications of CRISPR/Cas9 in retinal degenerative diseases. Int J Ophthalmol 10:646–651

    PubMed  PubMed Central  Google Scholar 

  • Priya CG, Arpitha P, Vaishali S, Prajna NV, Usha K, Sheetal K, Muthukkaruppan V (2011) Adult human buccal epithelial stem cells: identification, ex-vivo expansion, and transplantation for corneal surface reconstruction. Eye (Lond) 25:1641–1649

    Article  CAS  Google Scholar 

  • Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y (2012) Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS One 7:e32612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley HA (1993) Open-angle glaucoma. N Engl J Med 328:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Reardon S, Cyranoski D (2014) Japan stem-cell trial stirs envy. Nature 513:287–288

    Article  CAS  PubMed  Google Scholar 

  • Rezai KA, Kohen L, Wiedemann P, Heimann K (1997) Iris pigment epithelium transplantation. Graefes Arch Clin Exp Ophthalmol 235:558–562

    Article  CAS  PubMed  Google Scholar 

  • Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95

    Article  CAS  PubMed  Google Scholar 

  • Samson CM, Nduaguba C, Baltatzis S, Foster CS (2002) Limbal stem cell transplantation in chronic inflammatory eye disease. Ophthalmology 109:862–868

    Article  PubMed  Google Scholar 

  • Schraermeyer U, Kociok N, Heimann K (1999) Rescue effects of IPE transplants in RCS rats: short-term results. Invest Ophthalmol Vis Sci 40:1545–1556

    CAS  PubMed  Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman JP et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Article  PubMed  Google Scholar 

  • Schwartz SD, Tan G, Hosseini H, Nagiel A (2016) Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci 57:ORSFc1–ORSFc9

    Article  CAS  PubMed  Google Scholar 

  • Serle JB (1994) Pharmacological advances in the treatment of glaucoma. Drugs Aging 5:156–170

    Article  CAS  PubMed  Google Scholar 

  • Sheedlo HJ, Li L, Turner JE (1991) Photoreceptor cell rescue at early and late RPE-cell transplantation periods during retinal disease in RCS dystrophic rats. J Neural Transplant Plast 2:55–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Sun P, Du L, Zhu J, Ju C, Guo H, Wu X (2021) Long-term observation and sequencing analysis of SKPs-derived corneal endothelial cell-like cells for treating corneal endothelial dysfunction. Cell Transplant 30:9636897211017830

    Article  PubMed  Google Scholar 

  • Shimazaki J, Shimmura S, Fujishima H, Tsubota K (2000) Association of preoperative tear function with surgical outcome in severe Stevens-Johnson syndrome. Ophthalmology 107:1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Shortt AJ, Tuft SJ, Daniels JT (2010) Ex vivo cultured limbal epithelial transplantation. A clinical perspective. Ocul Surf 8:80–90

    Article  PubMed  Google Scholar 

  • Sluch VM, Chung-ha OD, Ranganathan V, Kerr JM, Krick K, Martin R, Berlinicke CA et al (2015) Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep 5:1–17

    Article  Google Scholar 

  • Song WK, Park KM, Kim HJ, Lee JH, Choi J, Chong SY, Shim SH et al (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4:860–872

    Article  CAS  Google Scholar 

  • Song Q, Yuan S, An Q, Chen Y, Mao FF, Liu Y, Liu Q et al (2016) Directed differentiation of human embryonic stem cells to corneal endothelial cell-like cells: a transcriptomic analysis. Exp Eye Res 151:107–114

    Article  CAS  PubMed  Google Scholar 

  • Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J et al (2013) Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990–2010. Ophthalmology 120:2377–2384

    Article  PubMed  Google Scholar 

  • Streilein JW, Ma N, Wenkel H, Ng TF, Zamiri P (2002) Immunobiology and privilege of neuronal retina and pigment epithelium transplants. Vis Res 42:487–495

    Article  PubMed  Google Scholar 

  • Sun J, Mandai M, Kamao H, Hashiguchi T, Shikamura M, Kawamata S, Sugita S et al (2015) Protective effects of human iPS-derived retinal pigmented epithelial cells in comparison with human mesenchymal stromal cells and human neural stem cells on the degenerating retina in rd1 mice. Stem Cells 33:1543–1553

    Article  CAS  PubMed  Google Scholar 

  • Syed-Picard FN, Du Y, Lathrop KL, Mann MM, Funderburgh ML, Funderburgh JL (2015) Dental pulp stem cells: a new cellular resource for corneal stromal regeneration. Stem Cells Transl Med 4:276–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan DTH, Dart JKG, Holland EJ, Kinoshita S (2012) Corneal transplantation. Lancet 379:1749–1761

    Article  PubMed  Google Scholar 

  • Thumann G, Bartz-Schmidt KU, El Bakri H, Schraermeyer U, Spee C, Cui JZ, Hinton DR et al (1999) Transplantation of autologous iris pigment epithelium to the subretinal space in rabbits. Transplantation 68:195–201

    Article  CAS  PubMed  Google Scholar 

  • Thumann G, Aisenbrey S, Schraermeyer U, Lafaut B, Esser P, Walter P, Bartz-Schmidt KU (2000) Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Arch Ophthalmol 118:1350–1355

    Article  CAS  PubMed  Google Scholar 

  • Tsonis PA, Del Rio-Tsonis K (2004) Lens and retina regeneration: transdifferentiation, stem cells and clinical applications. Exp Eye Res 78:161–172

    Article  CAS  PubMed  Google Scholar 

  • Tucker BA, Park IH, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6:e18992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ et al (2013) Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife 2:e00824

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Utheim TP (2013) Limbal epithelial cell therapy: past, present, and future. Methods Mol Biol 1014:3–43

    Article  CAS  PubMed  Google Scholar 

  • Venugopalan P, Wang Y, Nguyen T, Huang A, Muller KJ, Goldberg JL (2016) Transplanted neurons integrate into adult retinas and respond to light. Nat Commun 7:1–9

    Article  CAS  Google Scholar 

  • Visser N, Bauer NJ, Nuijts RM (2013) Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. J Cataract Refract Surg 39:624–637

    Article  PubMed  Google Scholar 

  • Wormstone IM (2002) Posterior capsule opacification: a cell biological perspective. Exp Eye Res 74:337–347

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, Du J, Gouras P, Kjeldbye H (1993) Retinal pigment epithelial transplants and retinal function in RCS rats. Invest Ophthalmol Vis Sci 34:3068–3075

    CAS  PubMed  Google Scholar 

  • Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A (2010a) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24:3274–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Yang Y, Brennan L, Bouhassira EE, Kantorow M, Cvekl A (2010b) Efficient generation of lens progenitor cells and lentoid bodies from human embryonic stem cells in chemically defined conditions. FASEB J 24:3274–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Pang K, Wu X (2014) Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev 23:1340–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WW (2015) Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmol 15(Suppl 1):155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao JJ, Afshari NA (2016) Generation of human corneal endothelial cells via in vitro ocular lineage restriction of pluripotent stem cells. Invest Ophthalmol Vis Sci 57:6878–6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong X, Gutierrez C, Xue T, Hampton C, Vergara MN, Cao LH, Peters A et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, Tucker BA et al (2016) Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci U S A 113:E3492–EE500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH (2017) Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci 58:2054–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Slevin M, Guo BQ, Zhu SR (2018) Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol 11(12):2004–2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Amer Riazuddin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Riazuddin, S.A., Khan, S.Y., Ali, M. (2022). The Potential of Stem Cells in Ocular Treatments. In: Haider, K.H. (eds) Handbook of Stem Cell Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-16-6016-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6016-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6016-0

  • Online ISBN: 978-981-16-6016-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics