Skip to main content

Neuroscience of Cognitive Functions: From Theory to Applications

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Humans are working in increasingly complex environments that place high demands on mental resources. This has motivated strong interest in characterizing the cognitive functions that contribute to human performance and capitalizing on advances in the behavioral and brain sciences to engineer effective strategies for enhancing work safety and productivity. The current chapter presents contemporary theories and principles of these cognitive functions from the perspective of psychology and neuroscience, and discusses opportunities and limitations of their applications in practical settings. Emphasis will be on five key concepts: mental workload, vigilance, mental fatigue, error detection, and creativity. Issues concerning noninvasive brain stimulation for cognitive augmentation are also discussed. With a deeper appreciation of the mechanisms underlying these cognitive functions, researchers can better identify potential avenues for developing novel ergonomic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulate cortex

ADHD:

Attention-deficit hyperactivity disorder

aMCC:

Anterior mid-cingulate cortex

AOC:

Attentional operating characteristics

AUT:

Alternative Uses task

CFS:

Chronic fatigue syndrome

cTBS:

Continuous TBS

DAN:

Dorsal attentional network

dlPFC:

Dorsal lateral prefrontal cortex

dmPFC:

Dorsomedial prefrontal cortex

EEG:

Electroencephalography

ERN:

Error-related negativity

ErrPs:

Error-related potentials

FEF:

Frontal eye field

fNIRS:

functional near-infrared spectroscopy

FRN:

Feedback-related negativity

IFG:

Inferior frontal gyrus

IPS:

Intraparietal sulcus

iTBS:

Intermittent theta-burst stimulation

LC-NE:

Locus-coeruleus noradrenergic

mPFC:

Medial prefrontal cortex

NE:

Noradrenaline

NIBS:

Noninvasive brain stimulation

PCC:

Posterior cingulate cortex

Pe:

Error positivity

PFC:

Prefrontal cortex

PPC:

Posterior parietal cortex

rTMS:

Repetitive TMS

SNR:

Signal-to-noise ratio

tACS:

Transcranial alternating current stimulation

TBS:

Theta-burst stimulation

tDCS:

Transcranial direct current stimulation

tES:

Transcranial electrical stimulation

Th:

Thalamus

TMS:

Transcranial magnetic stimulation

TPJ:

Temporoparietal junction

tRNS:

Transcranial random noise stimulation

VAN:

Ventral attentional network

vlPFC:

Ventral lateral prefrontal cortex

References

  1. Cinaz, B., Arnrich, B., Marca, R., Tröster, G.: Monitoring of mental workload levels during an everyday life office-work scenario. Pers. Ubiquit. Comput. 17(2), 229–239 (2013)

    Google Scholar 

  2. Baddeley, A.: Working memory. Science. 255(5044), 556–559 (1992)

    Google Scholar 

  3. Diamond, A.: Executive functions. Annu. Rev. Psychol. 64, 135–168 (2013)

    Google Scholar 

  4. Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., Greicius, M.D.: Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27(9), 2349–2356 (2007)

    Google Scholar 

  5. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics. 58(1), 1–17 (2015)

    Google Scholar 

  6. Kahneman, D.: Attention and Effort. Prentice-Hall, Inc, Englewood Cliffs (1973)

    Google Scholar 

  7. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002)

    Google Scholar 

  8. Sperling, G., Melchner, M.: The attention operating characteristic: examples from visual search. Science. 202(4365), 315–318 (1978)

    Google Scholar 

  9. Zurowski, B., Gostomzyk, J., Grön, G., Weller, R., Schirrmeister, H., Neumeier, B., Spitzer, M., Reske, S.N., Walter, H.: Dissociating a common working memory network from different neural substrates of phonological and spatial stimulus processing. NeuroImage. 15(1), 45–57 (2002)

    Google Scholar 

  10. Metzger, U., Parasuraman, R.: Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload. Hum. Factors. 47(1), 35–49 (2005)

    Google Scholar 

  11. Hancock, P.: The effect of performance failure and task demand on the perception of mental workload. Appl. Ergon. 20(3), 197–205 (1989)

    Google Scholar 

  12. Venables, L., Fairclough, S.H.: The influence of performance feedback on goal-setting and mental effort regulation. Motiv. Emot. 33(1), 63–74 (2009)

    Google Scholar 

  13. Ericsson, K.A., Lehmann, A.C.: Expert and exceptional performance: evidence of maximal adaptation to task constraints. Annu. Rev. Psychol. 47(1), 273–305 (1996)

    Google Scholar 

  14. Fisherl, C.D.: Boredom at work: a neglected concept. Hum. Relat. 46(3), 395–417 (1993)

    Google Scholar 

  15. Beilock, S.L., Carr, T.H.: On the fragility of skilled performance: what governs choking under pressure? J. Exp. Psychol. Gen. 130(4), 701–725 (2001)

    Google Scholar 

  16. Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)

    Google Scholar 

  17. Karbach, J., Verhaeghen, P.: Making working memory work:a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25(11), 2027–2037 (2014)

    Google Scholar 

  18. Schwaighofer, M., Fischer, F., Bühner, M.: Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ. Psychol. 50(2), 138–166 (2015)

    Google Scholar 

  19. Kee, T., Weiyan, C., Blasiak, A., Wang, P., Chong, J.K., Chen, J., Yeo, B.T.T., Ho, D., Asplund, C.L.: Harnessing CURATE.AI as a digital therapeutics platform by identifying N-of-1 learning trajectory profiles. Adv. Ther. 2(9), 1900023 (2019)

    Google Scholar 

  20. Walter, C., Rosenstiel, W., Bogdan, M., Gerjets, P., Spüler, M.: Online EEG-based workload adaptation of an arithmetic learning environment. Front. Hum. Neurosci. 11, 286 (2017)

    Google Scholar 

  21. Elmasry, J., Loo, C., Martin, D.: A systematic review of transcranial electrical stimulation combined with cognitive training. Restor. Neurol. Neurosci. 33(3), 263–278 (2015)

    Google Scholar 

  22. Langner, R., Eickhoff, S.B.: Sustaining attention to simple tasks: a meta-analytic review of the neural mechanisms of vigilant attention. Psychol. Bull. 139(4), 870–900 (2013)

    Google Scholar 

  23. Warm, J.S., Parasuraman, R., Matthews, G.: Vigilance requires hard mental work and is stressful. Hum. Factors. 50(3), 433–441 (2008)

    Google Scholar 

  24. Vossel, S., Geng, J.J., Fink, G.R.: Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 20(2), 150–159 (2014)

    Google Scholar 

  25. Dosenbach, N.U., Visscher, K.M., Palmer, E.D., Miezin, F.M., Wenger, K.K., Kang, H.C., Burgund, E.D., Grimes, A.L., Schlaggar, B.L., Petersen, S.E.: A core system for the implementation of task sets. Neuron. 50(5), 799–812 (2006)

    Google Scholar 

  26. Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)

    Google Scholar 

  27. Xia, M., Wang, J., He, Y.: BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One. 8(7), e68910 (2013)

    Google Scholar 

  28. Esterman, M., Rothlein, D.: Models of sustained attention. Curr. Opin. Psychol. 29, 174–180 (2019)

    Google Scholar 

  29. Samuels, E.R., Szabadi, E.: Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr. Neuropharmacol. 6(3), 235–253 (2008)

    Google Scholar 

  30. Thomson, D.R., Besner, D., Smilek, D.: A resource-control account of sustained attention: evidence from mind-wandering and vigilance paradigms. Perspect. Psychol. Sci. 10(1), 82–96 (2015)

    Google Scholar 

  31. Manly, T., Robertson, I.H., Galloway, M., Hawkins, K.: The absent mind:: further investigations of sustained attention to response. Neuropsychologia. 37(6), 661–670 (1999)

    Google Scholar 

  32. Kurzban, R., Duckworth, A., Kable, J.W., Myers, J.: An opportunity cost model of subjective effort and task performance. Behav. Brain Sci. 36(6), 661–679 (2013)

    Google Scholar 

  33. Lim, J., Dinges, D.F.: Sleep deprivation and vigilant attention. Ann. N. Y. Acad. Sci. 1129(1), 305–322 (2008)

    Google Scholar 

  34. Castellanos, F.X., Proal, E.: Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn. Sci. 16(1), 17–26 (2012)

    Google Scholar 

  35. Abbasi, N.I., Bodala, I.P., Bezerianos, A., Yu, S., Al-Nashash, H., Thakor, N.V.: Role of multisensory stimuli in vigilance enhancement- a single trial event related potential study. In: Paper presented at the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul (2017)

    Google Scholar 

  36. Bodala, I.P., Li, J., Thakor, N.V., Al-Nashash, H.: EEG and eye tracking demonstrate vigilance enhancement with challenge integration. Front. Hum. Neurosci. 10, 273 (2016)

    Google Scholar 

  37. Nelson, J.T., McKinley, R.A., Golob, E.J., Warm, J.S., Parasuraman, R.: Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS). NeuroImage. 85, 909–917 (2014)

    Google Scholar 

  38. Mensen, A., Gorban, C., Niklaus, M., Kuske, E., Khatami, R.: The effects of theta-burst stimulation on sleep and vigilance in humans. Front. Hum. Neurosci. 8, 420 (2014)

    Google Scholar 

  39. Boksem, M.A., Tops, M.: Mental fatigue: costs and benefits. Brain Res. Rev. 59(1), 125–139 (2008)

    Google Scholar 

  40. Van Der Linden, D., Frese, M., Sonnentag, S.: The impact of mental fatigue on exploration in a complex computer task: rigidity and loss of systematic strategies. Hum. Factors. 45(3), 483–494 (2003)

    Google Scholar 

  41. Grier, R.A., Warm, J.S., Dember, W.N., Matthews, G., Galinsky, T.L., Szalma, J.L., Parasuraman, R.: The vigilance decrement reflects limitations in effortful attention, not mindlessness. Human Fact. 45(3), 349–359 (2003)

    Google Scholar 

  42. Ampel, B.C., Muraven, M., McNay, E.C.: Mental work requires physical energy: self-control is neither exception nor exceptional. Front. Psychol. 9, 1005 (2018)

    Google Scholar 

  43. Xie, L., Kang, H., Xu, Q., Chen, M.J., Liao, Y., Thiyagarajan, M., O’Donnell, J., Christensen, D.J., Nicholson, C., Iliff, J.J., Takano, T., Deane, R., Nedergaard, M.: Sleep drives metabolite clearance from the adult brain. Science. 342(6156), 373–377 (2013)

    Google Scholar 

  44. Boksem, M.A., Meijman, T.F., Lorist, M.M.: Mental fatigue, motivation and action monitoring. Biol. Psychol. 72(2), 123–132 (2006)

    Google Scholar 

  45. Chaudhuri, A., Behan, P.O.: Fatigue and basal ganglia. J. Neurol. Sci. 179(1–2), 34–42 (2000)

    Google Scholar 

  46. Kohl, A.D., Wylie, G.R., Genova, H., Hillary, F., Deluca, J.: The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj. 23(5), 420–432 (2009)

    Google Scholar 

  47. Walton, M.E., Rudebeck, P.H., Bannerman, D.M., Rushworth, M.F.: Calculating the cost of acting in frontal cortex. Ann. N. Y. Acad. Sci. 1104(1), 340–356 (2007)

    Google Scholar 

  48. Sara, S.J., Bouret, S.: Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 76(1), 130–141 (2012)

    Google Scholar 

  49. Aston-Jones, G., Cohen, J.D.: An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005)

    Google Scholar 

  50. Joshi, S., Li, Y., Kalwani, R.M., Gold, J.I.: Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron. 89(1), 221–234 (2016)

    Google Scholar 

  51. Suda, M., Fukuda, M., Sato, T., Iwata, S., Song, M., Kameyama, M., Mikuni, M.: Subjective feeling of psychological fatigue is related to decreased reactivity in ventrolateral prefrontal cortex. Brain Res. 1252, 152–160 (2009)

    Google Scholar 

  52. Sun, Y., Lim, J., Kwok, K., Bezerianos, A.: Functional cortical connectivity analysis of mental fatigue unmasks hemispheric asymmetry and changes in small-world networks. Brain Cogn. 85, 220–230 (2014)

    Google Scholar 

  53. Harvy, J., Thakor, N., Bezerianos, A., Li, J.: Between-frequency topographical and dynamic high-order functional connectivity for driving drowsiness assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 27(3), 358–367 (2019)

    Google Scholar 

  54. Surawy, C., Hackmann, A., Hawton, K., Sharpe, M.: Chronic fatigue syndrome: a cognitive approach. Behav. Res. Ther. 33(5), 535–544 (1995)

    Google Scholar 

  55. Wang, H., Dragomir, A., Abbasi, N.I., Li, J., Thakor, N.V., Bezerianos, A.: A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn. Neurodyn. 12(4), 365–376 (2018)

    Google Scholar 

  56. Wang, H., Wu, C., Li, T., He, Y., Chen, P., Bezerianos, A.: Driving fatigue classification based on fusion entropy analysis combining EOG and EEG. IEEE Access. 7, 61975–61986 (2019)

    Google Scholar 

  57. Bose, R., Wang, H., Dragomir, A., Thakor, N.: Regression based continuous driving fatigue estimation: towards practical implementation. IEEE Trans. Cogn. Develop. Sys. 12(2), 323–331 (2020)

    Google Scholar 

  58. Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Wang, H., Sgarbas, K., Thakor, N., Bezerianos, A., Sun, Y.: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 740–749 (2018)

    Google Scholar 

  59. Hopstaken, J.F., van der Linden, D., Bakker, A.B., Kompier, M.A.: The window of my eyes: task disengagement and mental fatigue covary with pupil dynamics. Biol. Psychol. 110, 100–106 (2015)

    Google Scholar 

  60. Laeng, B., Endestad, T.: Bright illusions reduce the eye’s pupil. Proc. Natl. Acad. Sci. U. S. A. 109(6), 2162–2167 (2012)

    Google Scholar 

  61. Sikander, G., Anwar, S.: Driver fatigue detection systems: a review. IEEE Trans. Intell. Transp. Syst. 20(6), 2339–2352 (2018)

    Google Scholar 

  62. Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., Cohen, J.D.: Anterior cingulate cortex, error detection, and the online monitoring of performance. Science. 280(5364), 747–749 (1998)

    Google Scholar 

  63. Ullsperger, M., Harsay, H.A., Wessel, J.R., Ridderinkhof, K.R.: Conscious perception of errors and its relation to the anterior insula. Brain Struct. Funct. 214(5–6), 629–643 (2010)

    Google Scholar 

  64. Ham, T., Leff, A., de Boissezon, X., Joffe, A., Sharp, D.J.: Cognitive control and the salience network: an investigation of error processing and effective connectivity. J. Neurosci. 33(16), 7091–7098 (2013)

    Google Scholar 

  65. Chavarriaga, R., Sobolewski, A., Millán, J.R.: Errare machinale Est: the use of error-related potentials in brain-machine interfaces. Front. Neurosci. 8, 208 (2014)

    Google Scholar 

  66. Botvinick, M.M., Cohen, J.D., Carter, C.S.: Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8(12), 539–546 (2004)

    Google Scholar 

  67. Sawyer, B.D., Karwowski, W., Xanthopoulos, P., Hancock, P.: Detection of error-related negativity in complex visual stimuli: a new neuroergonomic arrow in the practitioner’s quiver. Ergonomics. 60(2), 234–240 (2017)

    Google Scholar 

  68. Loft, S., Bolland, S., Humphreys, M.S., Neal, A.: A theory and model of conflict detection in air traffic control: incorporating environmental constraints. J. Exp. Psychol. Appl. 15(2), 106–124 (2009)

    Google Scholar 

  69. Pailing, P.E., Segalowitz, S.J.: The effects of uncertainty in error monitoring on associated ERPs. Brain Cogn. 56(2), 215–233 (2004)

    Google Scholar 

  70. Hajcak, G., Moser, J.S., Yeung, N., Simons, R.F.: On the ERN and the significance of errors. Psychophysiology. 42(2), 151–160 (2005)

    Google Scholar 

  71. Jackson, F., Nelson, B.D., Hajcak, G.: The uncertainty of errors: intolerance of uncertainty is associated with error-related brain activity. Biol. Psychol. 113, 52–58 (2016)

    Google Scholar 

  72. Salazar-Gomez, A.F., DelPreto, J., Gil, S., Guenther, F.H., Rus, D.: Correcting robot mistakes in real time using EEG signals. In: Paper presented at the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore (2017)

    Google Scholar 

  73. Zhang, H., Chavarriaga, R., Khaliliardali, Z., Gheorghe, L., Iturrate, I., d R Millán, J.: EEG-based decoding of error-related brain activity in a real-world driving task. J. Neural Eng. 12(6), 066028 (2015)

    Google Scholar 

  74. Abu-Alqumsan, M., Kapeller, C., Hintermüller, C., Guger, C., Peer, A.: Invariance and variability in interaction error-related potentials and their consequences for classification. J. Neural Eng. 14(6), 066015 (2017)

    Google Scholar 

  75. Jarrahi, M.H.: Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Bus. Horiz. 61(4), 577–586 (2018)

    Google Scholar 

  76. Runco, M.A., Jaeger, G.J.: The standard definition of creativity. Creat. Res. J. 24(1), 92–96 (2012)

    Google Scholar 

  77. Runco, M.A., Acar, S.: Divergent thinking as an indicator of creative potential. Creat. Res. J. 24(1), 66–75 (2012)

    Google Scholar 

  78. Bose, R., Dragomir, A., Taya, F., Thakor, N., Bezerianos, A.: Role of Cross-Frequency Coupling in the Frontal and Parieto-Occipital Subnetwork during Creative Ideation. In: Paper presented at the 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), San Francisco (2019)

    Google Scholar 

  79. Guilford, J.P.: Creativity: yesterday, today and tomorrow. J. Creat. Behav. 1(1), 3–14 (1967)

    Google Scholar 

  80. Gilhooly, K., Fioratou, E., Anthony, S., Wynn, V.: Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects. Br. J. Psychol. 98(4), 611–625 (2007)

    Google Scholar 

  81. Beaty, R.E., Benedek, M., Silvia, P.J., Schacter, D.L.: Creative cognition and brain network dynamics. Trends Cogn. Sci. 20(2), 87–95 (2016)

    Google Scholar 

  82. Anticevic, A., Cole, M.W., Murray, J.D., Corlett, P.R., Wang, X.-J., Krystal, J.H.: The role of default network deactivation in cognition and disease. Trends Cogn. Sci. 16(12), 584–592 (2012)

    Google Scholar 

  83. Ellamil, M., Dobson, C., Beeman, M., Christoff, K.: Evaluative and generative modes of thought during the creative process. NeuroImage. 59(2), 1783–1794 (2012)

    Google Scholar 

  84. Ottemiller, D.D., Elliott, C.S., Giovannetti, T.: Creativity, overinclusion, and everyday tasks. Creat. Res. J. 26(3), 289–296 (2014)

    Google Scholar 

  85. Whitfield-Gabrieli, S., Thermenos, H.W., Milanovic, S., Tsuang, M.T., Faraone, S.V., McCarley, R.W., Shenton, M.E., Green, A.I., Nieto-Castanon, A., LaViolette, P.: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc. Natl. Acad. Sci. 106(4), 1279–1284 (2009)

    Google Scholar 

  86. Woodward, N.D., Rogers, B., Heckers, S.: Functional resting-state networks are differentially affected in schizophrenia. Schizophr. Res. 130(1–3), 86–93 (2011)

    Google Scholar 

  87. Atchley, R.A., Strayer, D.L., Atchley, P.: Creativity in the wild: improving creative reasoning through immersion in natural settings. PLoS One. 7(12), e51474 (2012)

    Google Scholar 

  88. Ritter, S.M., Dijksterhuis, A.: Creativity—the unconscious foundations of the incubation period. Front. Hum. Neurosci. 8, 215 (2014)

    Google Scholar 

  89. Sio, U., Ormerod, T.: Does incubation enhance problem solving? A meta-analytic review. Psychol. Bull. 135(1), 94–120 (2009)

    Google Scholar 

  90. Lebuda, I., Zabelina, D.L., Karwowski, M.: Mind full of ideas: a meta-analysis of the mindfulness–creativity link. Personal. Individ. Differ. 93, 22–26 (2016)

    Google Scholar 

  91. Hasenkamp, W., Barsalou, L.: Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 6, 38 (2012)

    Google Scholar 

  92. Ivancovsky, T., Kurman, J., Morio, H., Shamay-Tsoory, S.: Transcranial direct current stimulation (tDCS) targeting the left inferior frontal gyrus: effects on creativity across cultures. Soc. Neurosci. 14(3), 277–285 (2019)

    Google Scholar 

  93. Fertonani, A., Miniussi, C.: Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 23(2), 109–123 (2017)

    Google Scholar 

  94. Miniussi, C., Harris, J.A., Ruzzoli, M.: Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci. Biobehav. Rev. 37(8), 1702–1712 (2013)

    Google Scholar 

  95. Fitzgerald, P.B., Fountain, S., Daskalakis, Z.J.: A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 117(12), 2584–2596 (2006)

    Google Scholar 

  96. Touge, T., Gerschlager, W., Brown, P., Rothwell, J.C.: Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin. Neurophysiol. 112(11), 2138–2145 (2001)

    Google Scholar 

  97. Huang, Y.-Z., Edwards, M.J., Rounis, E., Bhatia, K.P., Rothwell, J.C.: Theta burst stimulation of the human motor cortex. Neuron. 45(2), 201–206 (2005)

    Google Scholar 

  98. Wischnewski, M., Schutter, D.J.: Efficacy and time course of theta burst stimulation in healthy humans. Brain Stimul. 8(4), 685–692 (2015)

    Google Scholar 

  99. Thut, G., Veniero, D., Romei, V., Miniussi, C., Schyns, P., Gross, J.: Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21(14), 1176–1185 (2011)

    Google Scholar 

  100. Iturrate, I., Pereira, M., Millán, J.R.: Closed-loop electrical neurostimulation: challenges and opportunities. Curr. Opin. Biomed. Eng. 8, 28–37 (2018)

    Google Scholar 

  101. Filmer, H.L., Dux, P.E., Mattingley, J.B.: Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci. 37(12), 742–753 (2014)

    Google Scholar 

  102. Helfrich, R.F., Schneider, T.R., Rach, S., Trautmann-Lengsfeld, S.A., Engel, A.K., Herrmann, C.S.: Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol. 24(3), 333–339 (2014)

    Google Scholar 

  103. Thut, G., Miniussi, C., Gross, J.: The functional importance of rhythmic activity in the brain. Curr. Biol. 22, 658–663 (2012)

    Google Scholar 

  104. Fröhlich, F., McCormick, D.A.: Endogenous electric fields may guide neocortical network activity. Neuron. 67(1), 129–143 (2010)

    Google Scholar 

  105. Moliadze, V., Antal, A., Paulus, W.: Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J. Physiol. 588(24), 4891–4904 (2010)

    Google Scholar 

  106. Moliadze, V., Atalay, D., Antal, A., Paulus, W.: Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul. 5(4), 505–511 (2012)

    Google Scholar 

  107. Inukai, Y., Saito, K., Sasaki, R., Tsuiki, S., Miyaguchi, S., Kojima, S., Masaki, M., Otsuru, N., Onishi, H.: Comparison of three non-invasive transcranial electrical stimulation methods for increasing cortical excitability. Front. Hum. Neurosci. 10, 668 (2016)

    Google Scholar 

  108. Terney, D., Chaieb, L., Moliadze, V., Antal, A., Paulus, W.: Increasing human brain excitability by transcranial high-frequency random noise stimulation. J. Neurosci. 28(52), 14147–14155 (2008)

    Google Scholar 

  109. van der Groen, O., Wenderoth, N.: Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception. J. Neurosci. 36(19), 5289–5298 (2016)

    Google Scholar 

  110. Fertonani, A., Pirulli, C., Miniussi, C.: Random noise stimulation improves neuroplasticity in perceptual learning. J. Neurosci. 31(43), 15416–15423 (2011)

    Google Scholar 

  111. López-Alonso, V., Cheeran, B., Río-Rodríguez, D., Fernández-del-Olmo, M.: Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7(3), 372–380 (2014)

    Google Scholar 

  112. Sparing, R., Buelte, D., Meister, I.G., Pauš, T., Fink, G.R.: Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum. Brain Mapp. 29(1), 82–96 (2008)

    Google Scholar 

  113. Datta, A.: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Front. Psych. 3, 91 (2012)

    Google Scholar 

  114. Helfrich, R.F., Knepper, H., Nolte, G., Strüber, D., Rach, S., Herrmann, C.S., Schneider, T.R., Engel, A.K.: Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 12(12), e1002031 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Bezerianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Seet, M.S., Bezerianos, A. (2023). Neuroscience of Cognitive Functions: From Theory to Applications. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_73

Download citation

Publish with us

Policies and ethics