Skip to main content

EEG Models and Analysis

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Continuous recording of neural tissue registers extracellular potentials known as electroencephalogram or EEG. This type of electrical activity accounts for spatiotemporal synchronization of neuronal assemblies in the vicinity of the recording electrode. EEG has been linked to complex processes in the brain, such as sleep, epilepsy, Parkinson’s disease, memory, spatial navigation, and cognition, to name a few. Moreover, the number of applications involving neuronal oscillations has increased exponentially due to improved hardware, well-established recording paradigms, and better understanding of neural mechanisms. It is then necessary to analyze EEG in a principled framework with the proper rigor of statistical methods. The first part of this chapter details the neurophysiological basis of EEG-generating mechanisms at the cellular level, different types of recorded extracellular potentials (categorized by invasive level), and the well-established EEG rhythms alongside their main behavioral correlates. The second part of the chapter describes the statistical properties of EEG and how different methods address these constraints. The third section thoroughly details the mathematical models and analysis tools most commonly used to represent the spectral–temporal–spatial structure of EEG. Lastly, the chapter ends with a brief summary, discussion, and an outline of future directions. Overall, this chapter is intended as a literature review of the statistical treatment commonly applied to this signature brain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AIC:

Akaike information criterion

AP:

Action potentials

AR:

Autoregressive

ARMA:

Autoregressive moving average

AWGN:

Additive white Gaussian noise

BCI:

Brain-computer interfaces

BIC:

Bayesian information criterion

BMI:

Brain-machine interfaces

DFT:

Discrete Fourier transform

EC:

Entorhinal cortex

ECG:

Electrocardiography

ECoG:

Electrocorticogram

EEG:

Electroencephalogram

EEGer:

Electroencephalographer

EMG:

Electromyography

EOG:

Electrooculography

EPSP:

Excitatory postsynaptic potentials

ERD:

Event-related desynchronization

ERS:

Event-related synchronization

FIR:

Finite impulse response

GABA:

Gamma-aminobutyric acid

ICA:

Independent component analysis

IPSP:

Inhibitory postsynaptic potentials

ISI:

Inter-spike interval

LFP:

Local field potential

LTI:

Linear, time invariant

LTP:

Long-term potentiation

MA:

Moving average

MEG:

Magnetoencephalogram

NREM:

Non-rapid eye movement

MSDB:

Medial septum diagonal band of Broca

PCA:

Principal component analysis

PSD:

Power spectral density

PSG:

Polysomnography

PSTH:

Peristimulus time histogram

RLS:

Recursive least squares

SNR:

Signal-to-noise ratio

SPP:

Simple point processes

SSS:

Strict sense stationarity

STFT:

Short-time Fourier transform

TF:

Time–frequency

WSS:

Wide sense stationarity

References

  1. Rechtschaffen, A., Kales, A., L.A.B.I.S. University of California, N. N. I. Network: A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects, Publication. Brain Information Service/Brain Research Institute, University of California (1968)

    Google Scholar 

  2. Borbély, A.A., Baumann, F., Brandeis, D., Strauch, I., Lehmann, D.: Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51(5), 483–493 (1981)

    Google Scholar 

  3. Nakasatp, N., Levesque, M.F., Barth, D.S., Baumgartner, C., Rogers, R.L., Sutherling, W.W.: Comparisons of MEG, EEG, and ECoG source localization in neocortical partial epilepsy in humans. Electroencephalogr. Clin. Neurophysiol. 91(3), 171–178 (1994)

    Google Scholar 

  4. Iasemidis, L.D., Shiau, D.-S., Chaovalitwongse, W., Sackellares, J.C., Pardalos, P.M., Principe, J.C., Carney, P.R., Prasad, A., Veeramani, B., Tsakalis, K.: Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50(5), 616–627 (2003)

    Google Scholar 

  5. Soikkeli, R., Partanen, J., Soininen, H., Pääkkönen, A., Riekkinen, P.: Slowing of EEG in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 79(3), 159–165 (1991)

    Google Scholar 

  6. Handojoseno, A.A., Shine, J.M., Nguyen, T.N., Tran, Y., Lewis, S.J., Nguyen, H.T.: Analysis and prediction of the freezing of gait using EEG brain dynamics. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5), 887–896 (2015)

    Google Scholar 

  7. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213), 334–337 (1989)

    Google Scholar 

  8. Tallon-Baudry, C., Bertrand, O.: Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3(4), 151–162 (1999)

    Google Scholar 

  9. Llinas, R., Ribary, U.: Coherent 40-Hz oscillation characterizes dream state in humans. Proc. Natl. Acad. Sci. 90(5), 2078–2081 (1993)

    Google Scholar 

  10. Kahana, M.J., Seelig, D., Madsen, J.R.: Theta returns. Curr. Opin. Neurobiol. 11(6), 739–744 (2001)

    Google Scholar 

  11. Buzsáki, G.: Theta oscillations in the hippocampus. Neuron 33(3), 325–340 (2002)

    Google Scholar 

  12. Engel, A.K., Fries, P., Singer, W.: Dynamic predictions: oscillations and synchrony in top–down processing. Nat. Rev. Neurol. 2(10), 704–716 (2001)

    Google Scholar 

  13. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of Neural Science, Vol. 4. McGraw-hill, New York (2000)

    Google Scholar 

  14. Lewicki, M.S.: A review of methods for spike sorting: the detection and classification of neural action potentials. Netw. Comput. Neural Syst. 9(4), R53–R78 (1998)

    MATH  Google Scholar 

  15. Georgopoulos, A.P., Kalaska, J.F., Caminiti, R., Massey, J.T.: On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2(11), 1527–1537 (1982)

    Google Scholar 

  16. Niedermeyer, E., da Silva, F.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins (2005)

    Google Scholar 

  17. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407 (2012)

    Google Scholar 

  18. Caton, R.: The electric currents of the brain. Br. Med. J. 2(1), 278 (1875)

    Google Scholar 

  19. Berger, H.: Über das elektrenkephalogramm des menschen. Eur. Arch. Psychiatry Clin. Neurosci. 87(1), 527–570 (1929)

    Google Scholar 

  20. Klem, G.H., Lüders, H.O., Jasper, H., Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52(3) (1999)

    Google Scholar 

  21. Grech, R., Cassar, T., Muscat, J., Camilleri, K.P., Fabri, S.G., Zervakis, M., Xanthopoulos, P., Sakkalis, V., Vanrumste, B.: Review on solving the inverse problem in EEG source analysis. J. Neuroeng. Rehabil. 5(1), 25 (2008)

    Google Scholar 

  22. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press (1995)

    Google Scholar 

  23. Penfield, W., Jasper, H.: Epilepsy and the functional anatomy of the human brain (1954)

    Google Scholar 

  24. Engel, A.K., Moll, C.K., Fried, I., Ojemann, G.A.: Invasive recordings from the human brain: clinical insights and beyond. Nat. Rev. Neurosci. 6(1), 35–47 (2005)

    Google Scholar 

  25. Green, J.: A simple microelectrode for recording from the central nervous system (1958)

    Google Scholar 

  26. Wolbarsht, M., MacNichol, E., Wagner, H.: Glass insulated platinum microelectrode. Science 132(3436), 1309–1310 (1960)

    Google Scholar 

  27. Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D.L., Carandini, M.: Local origin of field potentials in visual cortex. Neuron 61(1), 35–41 (2009)

    Google Scholar 

  28. Schnitzler, A., Gross, J.: Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6(4), 285–296 (2005)

    Google Scholar 

  29. Mormann, F., Lehnertz, K., David, P., Elger, C.E.: Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenom. 144(3), 358–369 (2000)

    MATH  Google Scholar 

  30. Kushida, C.A., Littner, M.R., Morgenthaler, T., Alessi, C.A., Bailey, D., Coleman Jr, J., Friedman, L., Hirshkowitz, M., Kapen, S., Kramer, M.: Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep 28(4), 499–521 (2005)

    Google Scholar 

  31. Lebedev, M.A., Nicolelis, M.A.: Brain–machine interfaces: past, present and future. TRENDS Neurosci. 29(9), 536–546 (2006)

    Google Scholar 

  32. Waldert, S., Pistohl, T., Braun, C., Ball, T., Aertsen, A., Mehring, C.: A review on directional information in neural signals for brain-machine interfaces. J. Physiol. Paris 103(3), 244–254 (2009)

    Google Scholar 

  33. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63 (2004)

    Google Scholar 

  34. Reddy, C.G., Reddy, G.G., Kawasaki, H., Oya, H., Miller, L.E., Howard, M.A.: Decoding movement-related cortical potentials from electrocorticography. Neurosurg. Focus. 27(1), E11 (2009)

    Google Scholar 

  35. Schalk, G., Leuthardt, E.C.: Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4, 140–154 (2011)

    Google Scholar 

  36. Crone, N.E., Sinai, A., Korzeniewska, A.: High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog. Brain Res. 159, 275–295 (2006)

    Google Scholar 

  37. Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J.: Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr. 2(3), 187–201 (1990)

    Google Scholar 

  38. Silberstein, P., Kühn, A.A., Kupsch, A., Trottenberg, T., Krauss, J.K., Wöhrle, J.C., Mazzone, P., Insola, A., Di Lazzaro, V., Oliviero, A.: Patterning of globus pallidus local field potentials differs between Parkinson’s disease and dystonia. Brain 126(12), 2597–2608 (2003)

    Google Scholar 

  39. Goldberg, J.A., Rokni, U., Boraud, T., Vaadia, E., Bergman, H.: Spike synchronization in the cortex-basal ganglia networks of parkinsonian primates reflects global dynamics of the local field potentials. J. Neurosci. 24(26), 6003–6010 (2004)

    Google Scholar 

  40. Hammond, C., Bergman, H., Brown, P.: Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7), 357–364 (2007)

    Google Scholar 

  41. Andersen, R.A., Musallam, S., Pesaran, B.: Selecting the signals for a brain–machine interface. Curr. Opin. Neurobiol. 14(6), 720–726 (2004)

    Google Scholar 

  42. Heldman, D.A., Wang, W., Chan, S.S., Moran, D.W.: Local field potential spectral tuning in motor cortex during reaching. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 180–183 (2006)

    Google Scholar 

  43. Buzsáki, G.: Two-stage model of memory trace formation: a role for noisy brain states. Neuroscience 31(3), 551–570 (1989)

    Google Scholar 

  44. Jones, M.W., Wilson, M.A.: Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol. 3(12), e402 (2005)

    Google Scholar 

  45. Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., Zugaro, M.B.: Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12(10), 1222–1223 (2009)

    Google Scholar 

  46. Buzsaki, G.: Rhythms of the Brain. Oxford University Press (2006)

    Google Scholar 

  47. Tatum IV, W.O.: Handbook of EEG Interpretation. Demos Medical Publishing (2014)

    Google Scholar 

  48. Steriade, M., Gloor, P., Llinas, R.R., Da Silva, F.L., Mesulam, M.-M.: Basic mechanisms of cerebral rhythmic activities. Electroencephalogr. Clin. Neurophysiol. 76(6), 481–508 (1990)

    Google Scholar 

  49. Sirota, A., Buzsáki, G.: Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat. Syst. 3(04), 245–259 (2005)

    Google Scholar 

  50. da Silva, F.L.: Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol. 79(2), 81–93 (1991)

    Google Scholar 

  51. Roopun, A.K., Middleton, S.J., Cunningham, M.O., LeBeau, F.E., Bibbig, A., Whittington, M.A., Traub, R.D.: A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc. Natl. Acad. Sci. 103(42), 15646–15650 (2006)

    Google Scholar 

  52. Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.-B., Moser, E.I.: Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462(7271), 353–357 (2009)

    Google Scholar 

  53. Kopell, N., Ermentrout, G., Whittington, M., Traub, R.: Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. 97(4), 1867–1872 (2000)

    Google Scholar 

  54. Steriade, M., Nunez, A., Amzica, F.: A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13(8), 3252–3265 (1993)

    Google Scholar 

  55. Buzsaki, G., Wise, K.: High-frequency network oscillation in the hippocampus. Science 256(5059), 1025 (1992)

    Google Scholar 

  56. De Gennaro, L., Ferrara, M.: Sleep spindles: an overview. Sleep Med. Rev. 7(5), 423–440 (2003)

    Google Scholar 

  57. Amzica, F., Steriade, M.: Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107(2), 69–83 (1998)

    Google Scholar 

  58. Başar, E., Başar-Eroglu, C., Karakaş, S., Schürmann, M.: Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 39(2), 241–248 (2001)

    Google Scholar 

  59. Larson, J., Wong, D., Lynch, G.: Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368(2), 347–350 (1986)

    Google Scholar 

  60. Winson, J.: Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201(4351), 160–163 (1978)

    Google Scholar 

  61. O’Keefe, J., Recce, M.L.: Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3), 317–330 (1993)

    Google Scholar 

  62. Skaggs, W.E., McNaughton, B.L.: Theta phase precession in hippocampal. Hippocampus 6, 149–172 (1996)

    Google Scholar 

  63. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2), 169–195 (1999)

    Google Scholar 

  64. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Google Scholar 

  65. Pfurtscheller, G., Brunner, C., Schlögl, A., Da Silva, F.L.: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks, NeuroImage 31(1), 153–159 (2006)

    Google Scholar 

  66. Li, Y., Long, J., Yu, T., Yu, Z., Wang, C., Zhang, H., Guan, C.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10), 2495–2505 (2010)

    Google Scholar 

  67. Canolty, R.T., Edwards, E., Dalal, S.S., Soltani, M., Nagarajan, S.S., Kirsch, H.E., Berger, M.S., Barbaro, N.M., Knight, R.T.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)

    Google Scholar 

  68. Fries, P.: Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224 (2009)

    Google Scholar 

  69. Loza, C.A., Okun, M.S., Principe, J.C.: A marked point process framework for extracellular electrical potentials. Front. Syst. Neurosci. 11, 95 (2017)

    Google Scholar 

  70. Leon-Garcia, A., Leon-Garcia, A.: Probability, Statistics, and Random Processes for Electrical Engineering. Pearson/Prentice Hall, Upper Saddle River (2008)

    MATH  Google Scholar 

  71. Papoulis, A.: Random Variables, and Stochastic Processes (1990)

    MATH  Google Scholar 

  72. Penttonen, M., Buzsáki, G.: Natural logarithmic relationship between brain oscillators. Thalamus Relat. Syst. 2(02), 145–152 (2003)

    Google Scholar 

  73. Pearson, K.: On lines and planes of closest fit to systems of points in space. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901)

    MATH  Google Scholar 

  74. Jung, T.-P., Humphries, C., Lee, T.-W., Makeig, S., McKeown, M.J., Iragui, V., Sejnowski, T.J.: Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Neural Networks for Signal Processing VIII, 1998. Proceedings of the 1998 IEEE Signal Processing Society Workshop, pp. 63–72 (1998)

    Google Scholar 

  75. Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)

    MATH  Google Scholar 

  76. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, Vol. 46. Wiley (2004)

    Google Scholar 

  77. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Google Scholar 

  78. Belouchrani, A., Cichocki, A.: Robust whitening procedure in blind source separation context. Electron. Lett. 36(24), 2050–2051 (2000)

    Google Scholar 

  79. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. In: IEE Proceedings F-Radar and Signal Processing, Vol. 140, pp 362–370 (1993)

    Google Scholar 

  80. Oppenheim, A.V., Schafer, R.W.: Discrete-Time Signal Processing. Pearson Higher Education (2010)

    Google Scholar 

  81. Freeman, W.J., Skarda, C.A.: Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Res. Rev. 10(3), 147–175 (1985)

    Google Scholar 

  82. Klonowski, W.: Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed. Phys. 3(1), 2 (2009)

    Google Scholar 

  83. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)

    Google Scholar 

  84. Freeman, W.J.: Mass action in the nervous system (1975)

    Google Scholar 

  85. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems, Vol. 13046. Addison-Wesley Reading (1989)

    Google Scholar 

  86. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory pp 144–152 (1992)

    Google Scholar 

  87. Rosipal, R., Trejo, L.J., Matthews, B.: Kernel PLS-SVC for linear and nonlinear classification. In: ICML, pp 640–647 (2003)

    Google Scholar 

  88. Liu, W., Principe, J.C., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction, Vol. 57. Wiley (2011)

    Google Scholar 

  89. Liu, W., Pokharel, P.P., Principe, J.C.: Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    MathSciNet  MATH  Google Scholar 

  90. Gunduz, A., Principe, J.C.: Correntropy as a novel measure for nonlinearity tests. Signal Process. 89(1), 14–23 (2009)

    MATH  Google Scholar 

  91. Blankertz, B., Muller, K.-R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, G., Millan, J.R., Schroder, M., Birbaumer, N.: The BCI competition III: Validating alternative approaches to actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 153–159 (2006)

    Google Scholar 

  92. Tangermann, M., Müller, K.-R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., Leeb, R., Mehring, C., Miller, K.J., Mueller-Putz, G.: Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Google Scholar 

  93. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley (2013)

    Google Scholar 

  94. Hazarika, N., Chen, J.Z., Tsoi, A.C., Sergejew, A.: Classification of EEG signals using the wavelet transform. In: 1997 13th International Conference on Digital Signal Processing Proceedings, 1997. DSP 97, Vol. 1, pp. 89–92 (1997)

    Google Scholar 

  95. Lins, O.G., Picton, T.W., Berg, P., Scherg, M.: Ocular artifacts in recording EEGs and event-related potentials II: Source dipoles and source components. Brain Topogr. 6(1), 65–78 (1993)

    Google Scholar 

  96. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Google Scholar 

  97. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999)

    Google Scholar 

  98. Von Bünau, P., Meinecke, F.C., Scholler, S., Müller, K.-R.: Finding stationary brain sources in EEG data. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2810–2813 (2010)

    Google Scholar 

  99. Wojcikiewicz, W., Vidaurre, C., Kawanabe, M.: Stationary common spatial patterns: towards robust classification of non-stationary EEG signals. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 577–580 (2011)

    Google Scholar 

  100. Samek, W., Vidaurre, C., Müller, K.-R., Kawanabe, M.: Stationary common spatial patterns for brain–computer interfacing. J. Neural Eng. 9(2), 026013 (2012)

    Google Scholar 

  101. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Google Scholar 

  102. Muller, K.-R., Anderson, C.W., Birch, G.E.: Linear and nonlinear methods for brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 165–169 (2003)

    Google Scholar 

  103. Sun, S., Zhang, C.: An optimal kernel feature extractor and its application to EEG signal classification. Neurocomputing 69(13), 1743–1748 (2006)

    Google Scholar 

  104. Zhao, Q., Rutkowski, T.M., Zhang, L., Cichocki, A.: Generalized optimal spatial filtering using a kernel approach with application to EEG classification. Cogn. Neurodyn. 4(4), 355–358 (2010)

    Google Scholar 

  105. Loza, C.A., Principe, J.C.: The embedding transform. a novel analysis of non-stationarity in the EEG. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3112–3115 (2018)

    Google Scholar 

  106. Loza, C.A., Principe, J.C.: Unsupervised robust detection of behavioral correlates in ECoG. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 509–512 (2017)

    Google Scholar 

  107. Ferdjallah, M., Barr, R.E.: Adaptive digital notch filter design on the unit circle for the removal of powerline noise from biomedical signals. IEEE Trans. Biomed. Eng. 41(6), 529–536 (1994)

    Google Scholar 

  108. He, P., Wilson, G., Russell, C.: Removal of ocular artifacts from electro-encephalogram by adaptive filtering. Med. Biol. Eng. Comput. 42(3), 407–412 (2004)

    Google Scholar 

  109. Pfurtscheller, G., Neuper, C., Schlogl, A., Lugger, K.: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 6(3), 316–325 (1998)

    Google Scholar 

  110. Principe, J.C., Lo, P.-C.: Estimation of Lyapunov exponents from the EEG. In: Engineering in Medicine and Biology Society, 1991. Vol. 13. Proceedings of the Annual International Conference of the IEEE, pp. 2230–2231 (1991)

    Google Scholar 

  111. Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116(10), 2266–2301 (2005)

    Google Scholar 

  112. Nair, S.P., Shiau, D.-S., Principe, J.C., Iasemidis, L.D., Pardalos, P.M., Norman, W.M., Carney, P.R., Kelly, K.M., Sackellares, J.C.: An investigation of EEG dynamics in an animal model of temporal lobe epilepsy using the maximum Lyapunov exponent. Exp. Neurol. 216(1), 115–121 (2009)

    Google Scholar 

  113. Appel, U.: Adaptive sequential segmentation of piecewise stationary time series. Inf. Sci. 29(1), 27–56 (1983)

    MATH  Google Scholar 

  114. Penny, W.D., Roberts, S.J.: Dynamic models for nonstationary signal segmentation. Comput. Biomed. Res. 32(6), 483–502 (1999)

    Google Scholar 

  115. Stoica, P., Moses, R.L.: Spectral Analysis of Signals, Vol. 452. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  116. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)

    Google Scholar 

  117. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    MathSciNet  MATH  Google Scholar 

  118. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    MathSciNet  MATH  Google Scholar 

  119. Pardey, J., Roberts, S., Tarassenko, L.: A review of parametric modelling techniques for EEG analysis. Med. Eng. Phys. 18(1), 2–11 (1996)

    Google Scholar 

  120. Bollimunta, A., Chen, Y., Schroeder, C.E., Ding, M.: Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J. Neurosci. 28(40), 9976–9988 (2008)

    Google Scholar 

  121. Jansen, B.H., Bourne, J.R., Ward, J.W.: Autoregressive estimation of short segment spectra for computerized EEG analysis. IEEE Trans. Biomed. Eng. (9), 630–638 (1981)

    Google Scholar 

  122. Muthuswamy, J., Thakor, N.V.: Spectral analysis methods for neurological signals. J. Neurosci. Methods 83(1), 1–14 (1998)

    Google Scholar 

  123. Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 194–208 (1999)

    Google Scholar 

  124. Cohen, L.: Time-Frequency Analysis, Vol. 778. Prentice Hall (1995)

    Google Scholar 

  125. Gabor, D.: Theory of communication. Part 1: The analysis of information, Electrical Engineers-Part III: Radio and Communication Engineering. J. Inst. 93(26), 429–441 (1946)

    Google Scholar 

  126. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1999)

    Google Scholar 

  127. Quiroga, R.Q., Blanco, S., Rosso, O., Garcia, H., Rabinowicz, A.: Searching for hidden information with Gabor Transform in generalized tonic-clonic seizures. Electroencephalogr. Clin. Neurophysiol. 103(4), 434–439 (1997)

    Google Scholar 

  128. Horovitz, S.G., Fukunaga, M., de Zwart, J.A., van Gelderen, P., Fulton, S.C., Balkin, T.J., Duyn, J.H.: Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG-fMRI study. Hum. Brain Mapp. 29(6), 671–682 (2008)

    Google Scholar 

  129. Gunduz, A., Brunner, P., Sharma, M., Leuthardt, E.C., Ritaccio, A.L., Pesaran, B., Schalk, G.: Differential roles of high gamma and local motor potentials for movement preparation and execution. Brain Comput. Interfaces 3(2), 88–102 (2016)

    Google Scholar 

  130. Bracewell, R.N., Bracewell, R.N.: The Fourier Transform and Its Applications, Vol. 31999. McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  131. Rosso, O., Martin, M., Figliola, A., Keller, K., Plastino, A.: EEG analysis using wavelet-based information tools. J. Neurosci. Methods 153(2), 163–182 (2006)

    Google Scholar 

  132. Quiroga, R.Q., Garcia, H.: Single-trial event-related potentials with wavelet denoising. Clin. Neurophysiol. 114(2), 376–390 (2003)

    Google Scholar 

  133. Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)

    Google Scholar 

  134. Devuyst, S., Dutoit, T., Stenuit, P., Kerkhofs, M.: Automatic sleep spindles detection-overview and development of a standard proposal assessment method. In: Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE, pp. 1713–1716 (2011)

    Google Scholar 

  135. Devuyst, S.: The DREAMS Database (2011)

    Google Scholar 

  136. La Tour, T.D., Moreau, T., Jas, M., Gramfort, A.: Multivariate convolutional sparse coding for electromagnetic brain signals. In: Advances in Neural Information Processing Systems, pp. 3292–3302 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Loza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Loza, C.A., Principe, J.C. (2023). EEG Models and Analysis. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_65

Download citation

Publish with us

Policies and ethics