Skip to main content

Neurorehabilitation with Virtual and Augmented Reality Tools

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Neuromotor disorders, such as stroke, traumatic brain injury, and limb loss, result in patients suffering from significant physical and psychological barriers which significantly impede a patient’s ability to perform activities of daily living. While conventional therapeutic interventions help patients to regain functionality, they are often monotonous and unengaging, resulting in poor patient motivation and dedication to complete the regimen. Given the widespread use and success of virtual and augmented reality systems, many neurorehabilitation developers have begun incorporating these paradigms into therapeutic services with promising results. This chapter presents an overview of the use of virtual and augmented reality tools for the treatment of neuromotor disorders in recent decades. The current status of rehabilitation engineering devices is illustrated and analyzed along with the challenges and issues that must be overcome so that virtual and augmented reality-based rehabilitation can be made accessible to a larger population. We present various examples of virtual and augmented reality applications in the field of neuromotor disorder treatment and rehabilitation as well as the advantages of applying these paradigms to address critical technical issues found in traditional clinical protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ADL:

Activities of daily living

AR:

Augmented reality

ARM:

Augmented Reality Myoelectric

BMI:

Brain-machine interface

CAREN:

Computer Assisted Rehabilitation Environment

CVA:

Cerebrovascular accident

DARPA:

Defense Advanced Research Projects Agency

DoF:

Degrees of freedom

ECoG:

Electrocorticography

EEG:

Electroencephalography

HARMONIE:

Hybrid Augmented Reality Multimodal Operation Neural Integration Environment

HoloPHAM:

Holographic Prosthetic Hand Assessment Measure

JHU APL:

Johns Hopkins University Applied Physics Lab

MPL:

Modular Prosthetic Limb

MPR:

Myoelectric pattern recognition

MR:

Mixed reality

OT:

Occupational therapist

PHAM:

Prosthetic Hand Assessment Measure

ROM:

Ranges of motion

sEMG:

Surface electromyography

VR:

Virtual reality

References

  1. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., De Ferranti, S., Després, J.P., Fullerton, H.J., Howard, V.J., Huffman, M.D.: Heart disease and stroke statistics – 2015 update: A report from the American Heart Association. Circulation. 131(4), e29–e322 (2015)

    Google Scholar 

  2. Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Augmented reality games for upper-limb stroke rehabilitation. In: 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, pp. 75–78. IEEE (2010)

    Google Scholar 

  3. Lindsay, P., Furie, K.L., Davis, S.M., Donnan, G.A., Norrving, B.: World Stroke Organization global stroke services guidelines and action plan. Int. J. Stroke. 9, 4–13 (2014)

    Google Scholar 

  4. Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., De Ferranti, S.D., Floyd, J., Fornage, M., Gillespie, C., Isasi, C.R.: Heart disease and stroke statistics – 2017 update: A report from the American Heart Association. Circulation. 135(10), e146–e603 (2017)

    Google Scholar 

  5. Vourvopoulos, A., Pardo, O.M., Lefebvre, S., Neureither, M., Saldana, D., Jahng, E., Liew, S.L.: Effects of a brain-computer interface with virtual reality (VR) neurofeedback: A pilot study in chronic stroke patients. Front. Hum. Neurosci. 13, 210 (2019)

    Google Scholar 

  6. Miller, E.L., Murray, L., Richards, L., Zorowitz, R.D., Bakas, T., Clark, P., Billinger, S.A.: Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: A scientific statement from the American Heart Association. Stroke. 41(10), 2402–2448 (2010)

    Google Scholar 

  7. Crome, P., Kalra, L., Fagerberg, B., Blomstrand, C., Yip, B., McAlpine, C.: Do stroke units save lives? Lancet. 342(8877), 992 (1993)

    Google Scholar 

  8. Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: A systematic review. Lancet Neurol. 8(8), 741–754 (2009)

    Google Scholar 

  9. Butler, A.J., Page, S.J.: Mental practice with motor imagery: Evidence for motor recovery and cortical reorganization after stroke. Arch. Phys. Med. Rehabil. 87(12), 2–11 (2006)

    Google Scholar 

  10. Cameirão, M.S., i Badia, S.B., Oller, E.D., Verschure, P.F.: Neurorehabilitation using the virtual reality based Rehabilitation Gaming System: Methodology, design, psychometrics, usability and validation. J. Neuroeng. Rehabil. 7(1), 1–14 (2010)

    Google Scholar 

  11. Massetti, T., Da Silva, T.D., Crocetta, T.B., Guarnieri, R., De Freitas, B.L., Bianchi Lopes, P., Watson, S., Tonks, J., de Mello Monteiro, C.B.: The clinical utility of virtual reality in neurorehabilitation: a systematic review. J. Cent. Nerv. Syst. Dis. 10, 1179573518813541 (2018)

    Google Scholar 

  12. Levin, M.F., Weiss, P.L., Keshner, E.A.: Emergence of virtual reality as a tool for upper limb rehabilitation: Incorporation of motor control and motor learning principles. Phys. Ther. 95(3), 415–425 (2015)

    Google Scholar 

  13. Ziegler-Graham, K., MacKenzie, E.J., Ephraim, P.L., Travison, T.G., Brookmeyer, R.: Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89(3), 422–429 (2008)

    Google Scholar 

  14. Owings, M.: Ambulatory and Inpatient Procedures in the United States, 1996 (No. 139). US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics (1998)

    Google Scholar 

  15. Flor, H., Nikolajsen, L., Jensen, T.S.: Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7(11), 873–881 (2006)

    Google Scholar 

  16. Winslow, B.D., Ruble, M., Huber, Z.: Mobile, game-based training for myoelectric prosthesis control. Front. Bioeng. Biotechnol. 6, 94 (2018)

    Google Scholar 

  17. Kaur, A., Guan, Y.: Phantom limb pain: A literature review. Chin. J. Traumatol. 21(6), 366–368 (2018)

    Google Scholar 

  18. Nejatkermany, M.P.Z., Modirian, E., Soroush, M., Masoumi, M., Hosseini, M.: Phantom limb sensation (PLS) and phantom limb pain (PLP) among young landmine amputees. Iranian J. Child Neurol. 10(3), 42 (2016)

    Google Scholar 

  19. Kashani, J.H., Frank, R.G., Kashani, S.R., Wonderlich, S.A., Reid, J.C.: Depression among amputees. J. Clin. Psychiatry 44(7), 256–258 (1983)

    Google Scholar 

  20. Esquenazi, A.: Amputation rehabilitation and prosthetic restoration. From surgery to community reintegration. Disabil. Rehabil. 26(14–15), 831–836 (2004)

    Google Scholar 

  21. Fougner, A., Stavdahl, Ø., Kyberd, P.J., Losier, Y.G., Parker, P.A.: Control of upper limb prostheses: Terminology and proportional myoelectric control – A review. IEEE Trans. Neural Syst. Rehabil. Eng. 20(5), 663–677 (2012)

    Google Scholar 

  22. Anderson, F., Bischof, W.F.: Augmented reality improves myoelectric prosthesis training. Int. J. Disabil. Human Dev. 13(3), 349–354 (2014)

    Google Scholar 

  23. Dupont, A.C., Morin, E.L.: A myoelectric control evaluation and trainer system. IEEE Trans. Rehabil. Eng. 2(2), 100–107 (1994)

    Google Scholar 

  24. Smurr, L.M., Gulick, K., Yancosek, K., Ganz, O.: Managing the upper extremity amputee: a protocol for success. J. Hand Ther. 21(2), 160–176 (2008)

    Google Scholar 

  25. Burkhalter, W.E., Mayfield, G.E.R.A.L.D., Carmona, L.S.: The upper-extremity amputee. Early and immediate post-surgical prosthetic fitting. J. Bone Joint Surg. American. 58(1), 46–51 (1976)

    Google Scholar 

  26. Østlie, K., Lesjø, I.M., Franklin, R.J., Garfelt, B., Skjeldal, O.H., Magnus, P.: Prosthesis rejection in acquired major upper-limb amputees: A population-based survey. Disabil. Rehabil. Assist. Technol. 7(4), 294–303 (2012)

    Google Scholar 

  27. Biddiss, E., Chau, T.: Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86(12), 977–987 (2007)

    Google Scholar 

  28. Dawson, M.R., Fahimi, F., Carey, J.P.: The development of a myoelectric training tool for above-elbow amputees. Open Biomed. Eng. J. 6, 5 (2012)

    Google Scholar 

  29. Burdea, G.C., Coiffet, P.: Virtual reality technology. Wiley (2003)

    Google Scholar 

  30. Burdea, G.: Virtual rehabilitation-benefits and challenges. Yearb. Med. Inform. 12(01), 170–176 (2003)

    Google Scholar 

  31. Steuer, J.: Defining virtual reality: Dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992)

    Google Scholar 

  32. Sherman, W.R., Craig, A.B.: Understanding virtual reality: Interface, application, and design. Morgan Kaufmann (2018)

    Google Scholar 

  33. Kaufmann, H., Schmalstieg, D.: Mathematics and geometry education with collaborative augmented reality. In: ACM SIGGRAPH 2002 conference abstracts and applications, pp. 37–41 (2002)

    Google Scholar 

  34. Rose, T., Nam, C.S., Chen, K.B.: Immersion of virtual reality for rehabilitation-Review. Appl. Ergon. 69, 153–161 (2018)

    Google Scholar 

  35. Sturma, A., Hruby, L.A., Prahm, C., Mayer, J.A., Aszmann, O.C.: Rehabilitation of upper extremity nerve injuries using surface EMG biofeedback: protocols for clinical application. Front. Neurosci. 12, 906 (2018)

    Google Scholar 

  36. HTC Company. Vive Pro VR Headset. Available from https://enterprise.vive.com/us/product/vive-pro/

  37. Oculus Rift S VR Headset. Access: https://www.oculus.com/rift-s/

  38. Murray, C.D., Patchick, E., Pettifer, S., Caillette, F., Howard, T.: Immersive virtual reality as a rehabilitative technology for phantom limb experience: a protocol. Cyber Psychol. Behav. 9(2), 167–170 (2006)

    Google Scholar 

  39. Lamounier, E., Lopes, K., Cardoso, A., Andrade, A., Soares, A.: On the use of virtual and augmented reality for upper limb prostheses training and simulation. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 2451–2454. IEEE (2010)

    Google Scholar 

  40. Lambrecht, J.M., Pulliam, C.L., Kirsch, R.F.: Virtual reality environment for simulating tasks with a myoelectric prosthesis: an assessment and training tool. J. Prosthetics Orthotics: JPO. 23(2), 89 (2011)

    Google Scholar 

  41. Belter, J.T., Segil, J.L., SM, B.: Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50(5), 599 (2013)

    Google Scholar 

  42. Johansson, B.B.: Brain plasticity and stroke rehabilitation: The Willis lecture. Stroke. 31(1), 223–230 (2000)

    Google Scholar 

  43. Veerbeek, J.M., van Wegen, E., van Peppen, R., van der Wees, P.J., Hendriks, E., Rietberg, M., Kwakkel, G.: What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One. 9(2), e87987 (2014)

    Google Scholar 

  44. Kong, K.H., Loh, Y.J., Thia, E., Chai, A., Ng, C.Y., Soh, Y.M., Toh, S., Tjan, S.Y.: Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: A randomized, controlled study. Top. Stroke Rehabil. 23(5), 333–340 (2016)

    Google Scholar 

  45. Levin, M.F., Snir, O., Liebermann, D.G., Weingarden, H., Weiss, P.L.: Virtual reality versus conventional treatment of reaching ability in chronic stroke: Clinical feasibility study. Neurol. Ther. 1(1), 1–15 (2012)

    Google Scholar 

  46. Lange, B., Koenig, S., Chang, C.Y., McConnell, E., Suma, E., Bolas, M., Rizzo, A.: Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil. Rehabil. 34(22), 1863–1870 (2012)

    Google Scholar 

  47. Laver, K., George, S., Thomas, S., Deutsch, J., Crotty, M.: Virtual reality for stroke rehabilitation: an abridged version of a Cochrane review (2015)

    Google Scholar 

  48. Lake, C.: Effects of prosthetic training on upper-extremity prosthesis use. Assessment. 8(11), 12 (1997)

    Google Scholar 

  49. Atzori, M., Müller, H.: Control capabilities of myoelectric robotic prostheses by hand amputees: a scientific research and market overview. Front. Syst. Neurosci. 9, 162 (2015)

    Google Scholar 

  50. Ison, M., Artemiadis, P.: Proportional myoelectric control of robots: muscle synergy development drives performance enhancement, retainment, and generalization. IEEE Trans. Robot. 31(2), 259–268 (2015)

    Google Scholar 

  51. van der Riet, D., Stopforth, R., Bright, G., Diegel, O.: An overview and comparison of upper limb prosthetics. In: IEEE 2013 Africon, pp. 1–8. IEEE (2013)

    Google Scholar 

  52. Bensmaia, S.J., Miller, L.E.: Restoring sensorimotor function through intracortical interfaces: Progress and looming challenges. Nat. Rev. Neurosci. 15(5), 313–325 (2014)

    Google Scholar 

  53. Niedernhuber, M., Barone, D.G., Lenggenhager, B.: Prostheses as extensions of the body: Progress and challenges. Neurosci. Biobehav. Rev. 92, 1–6 (2018)

    Google Scholar 

  54. Oskoei, M.A., Hu, H.: Support vector machine-based classification scheme for myoelectric control applied to upper limb. IEEE Trans. Biomed. Eng. 55(8), 1956–1965 (2008)

    Google Scholar 

  55. Zhuang, K.Z., Sommer, N., Mendez, V., Aryan, S., Formento, E., D’Anna, E., Artoni, F., Petrini, F., Granata, G., Cannaviello, G., Raffoul, W.: Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 1(9), 400–411 (2019)

    Google Scholar 

  56. Al-Jumaily, A., Olivares, R.A.: Electromyogram (EMG) driven system based virtual reality for prosthetic and rehabilitation devices. In: 11th International Conference on Information Integration and Web-based Applications & Services, pp. 582–586 (December 2009)

    Google Scholar 

  57. Betthauser, J.L., Krall, J.T., Bannowsky, S.G., Lévay, G., Kaliki, R.R., Fifer, M.S., Thakor, N.V.: Stable responsive EMG sequence prediction and adaptive reinforcement with temporal convolutional networks. IEEE Trans. Biomed. Eng. 67(6), 1707–1717 (2019)

    Google Scholar 

  58. Baertlein, L.: Physical therapists prescribe Wii time. Retrieved April, 14(2008), pp. 22899777–5014117 (2007)

    Google Scholar 

  59. Herz, N.B., Mehta, S.H., Sethi, K.D., Jackson, P., Hall, P., Morgan, J.C.: Nintendo Wii rehabilitation (“Wii-hab”) provides benefits in Parkinson's disease. Parkinsonism Relat. Disord. 19(11), 1039–1042 (2013)

    Google Scholar 

  60. Weiss, P.L., Rand, D., Katz, N., Kizony, R.: Video capture virtual reality as a flexible and effective rehabilitation tool. J. Neuroeng. Rehabil. 1(1), 12 (2004)

    Google Scholar 

  61. Steinbauer, A., Mitchell, C.: Virtual reality used as an effective rehabilitation tool for increasing motor function in people with physical disabilities: A systematic literature review (Doctoral dissertation, The College of St. Scholastica, 2009)

    Google Scholar 

  62. Sveistrup, H., McComas, J., Thornton, M., Marshall, S., Finestone, H., McCormick, A., Babulic, K., Mayhew, A.: Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol. Behav. 6(3), 245–249 (2003)

    Google Scholar 

  63. Holden, M.K.: Virtual environments for motor rehabilitation. Cyberpsychol. Behav. 8(3), 187–211 (2005)

    Google Scholar 

  64. Powello, W., Rizzo, A., Sharkey, P.M, Merrick, J. Rehabilitation: innovations and challenges in the use of virtual reality technologies. New York: Nova Science Publishers, Inc. 1st ed. (2017)

    Google Scholar 

  65. Isaacson, B.M., Swanson, T.M., Pasquina, P.F.: The use of a computer-assisted rehabilitation environment (CAREN) for enhancing wounded warrior rehabilitation regimens. J. Spinal Cord Med. 36(4), 296–299 (2013)

    Google Scholar 

  66. Knight, A., Carey, S., Dubey, R.: An interim analysis of the use of virtual reality to enhance upper limb prosthetic training and rehabilitation. In: 9th ACM International Conference on Pervasive Technologies Related to Assistive Environments, pp. 1–4 (June 2016)

    Google Scholar 

  67. Murray, C.D., Pettifer, S., Howard, T., Patchick, E.L., Caillette, F., Kulkarni, J., Bamford, C.: The treatment of phantom limb pain using immersive virtual reality: Three case studies. Disabil. Rehabil. 29(18), 1465–1469 (2007)

    Google Scholar 

  68. Ramachandran, V.S., Rogers-Ramachandran, D.: Synaesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263(1369), 377–386 (1996)

    Google Scholar 

  69. Trojan, J., Diers, M., Fuchs, X., Bach, F., Bekrater-Bodmann, R., Foell, J., Kamping, S., Rance, M., Maaß, H., Flor, H.: An augmented reality home-training system based on the mirror training and imagery approach. Behav. Res. Methods. 46(3), 634–640 (2014)

    Google Scholar 

  70. Knight, A.D.: The development of a platform interface with the use of virtual reality to enhance upper-extremity prosthetic training and rehabilitation. University of South Florida (2017)

    Google Scholar 

  71. Ma, M., Oikonomou, A. (eds.): Serious Games and Edutainment Applications, vol. 504. Springer, London (2011)

    Google Scholar 

  72. Mitgutsch, K., Alvarado, N.: Purposeful by design? A serious game design assessment framework. In: Proceedings of the International Conference on the Foundations of Digital Games, pp. 121–128 (May 2012)

    Google Scholar 

  73. Michael, D.R., Chen, S.L.: Serious games: Games that educate, train, and inform. Muska & Lipman/Premier-Trade (2005)

    Google Scholar 

  74. Hocine, N., Gouaïch, A.: Therapeutic games’ difficulty adaptation: An approach based on player's ability and motivation. In: 6th International Conference on Computer Games, pp. 257–261. IEEE (2011)

    Google Scholar 

  75. Cyrino, G., Tannús, J., Lamounier, E., Cardoso, A., Soares, A.: Serious game with virtual reality for upper limb rehabilitation after stroke. In: 20th Symposium on Virtual and Augmented Reality, pp. 238–242. IEEE (2018)

    Google Scholar 

  76. Assis, G.A.D., Corrêa, A.G.D., Martins, M.B.R., Pedrozo, W.G., Lopes, R.D.D.: An augmented reality system for upper-limb post-stroke motor rehabilitation: A feasibility study. Disabil. Rehabil. Assist. Technol. 11(6), 521–528 (2016)

    Google Scholar 

  77. Fugl-Meyer, A.R., Jääskö, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7(1), 13–31 (1975)

    Google Scholar 

  78. AlMousa, M., Al-Khalifa, H.S., AlSobayel, H.: Move-IT: A virtual reality game for upper limb stroke rehabilitation patients. In: International Conference on Computers Helping People with Special Needs, pp. 184–195. Springer, Cham (2020)

    Google Scholar 

  79. Côté, P., et al.: The burden and determinants of neck pain in workers. Eur. Spine J. 17(1), 60–74 (2008)

    Google Scholar 

  80. Kroeling, P., Gross, A., Graham, N., Burnie, S.J., Szeto, G., Goldsmith, C.H., Haines, T., Forget, M.: Electrotherapy for neck pain. Cochrane Database Syst. Rev. 8 (2013)

    Google Scholar 

  81. Vlaeyen, J.W.S., Crombez, G.: Fear of movement/(re) injury, avoidance and pain disability in chronic low back pain patients. Man. Ther. 4(4), 187–195 (1999)

    Google Scholar 

  82. Halton, J.: Virtual rehabilitation with video games: A new frontier for occupational therapy. Occup. Ther. Now. 9(6), 12–14 (2008)

    Google Scholar 

  83. Chen, K.B., Sesto, M.E., Ponto, K., Leonard, J., Mason, A., Vanderheiden, G., Williams, J., Radwin, R.G.: Use of virtual reality feedback for patients with chronic neck pain and kinesiophobia. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1240–1248 (2016)

    Google Scholar 

  84. Markovic, M., Dosen, S., Cipriani, C., Popovic, D., Farina, D.: Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. J. Neural Eng. 11(4), 046001 (2014)

    Google Scholar 

  85. Sharma, A., Niu, W., Hunt, C.L., Levay, G., Kaliki, R., Thakor, N.V.: Augmented reality prosthesis training setup for motor skill enhancement. arXiv preprint arXiv:1903.01968 (2019)

    Google Scholar 

  86. Cavalcante, R.S., Júnior, E.A.L., Cardoso, A., Soares, A., de Lima, G.M.: Development of a serious game for rehabilitation of upper limb amputees. In: 20th Symposium on Virtual and Augmented Reality, pp. 99–105. IEEE (2018)

    Google Scholar 

  87. Hunt, C., Yerrabelli, R., Clancy, C., Osborn, L., Kaliki, R., Thakor, N.: Pham: Prosthetic hand assessment measure. In: Proceedings of MEC17, Myoelectric Controls Symposium – A Sense of What’s to Come, p. 221 (2017)

    Google Scholar 

  88. de Lima, D.A.C., Cavalcante, R.S., Cyrino, G.F., Mattioli, L.R., Lamounier, E.A., Cardoso, A., de Lima, G.F.M.: Augmented holographic system for upper limb amputees training. In: 20th Symposium on Virtual and Augmented Reality, pp. 233–237. IEEE (2018)

    Google Scholar 

  89. Lebedev, M.A., Tate, A.J., Hanson, T.L., Li, Z., O’Doherty, J.E., Winans, J.A., Ifft, P.J., Zhuang, K.Z., Fitzsimmons, N.A., Schwarz, D.A., Fuller, A.M.: Future developments in brain-machine interface research. Clinics. 66, 25–32 (2011)

    Google Scholar 

  90. Yu, K., Perry, B., Moran, C., Armiger, R., Johannes, M., Hawkins, A., Stentz, L., Vandersea, J., Tsao, J., Pasquina, P.: Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees. Sci. Rep. 11(1) (2021)

    Google Scholar 

  91. Thomas, T.M., Nickl, R.W., Thompson, M.C., Candrea, D.N., Fifer, M.S., McMullen, D.P., Osborn, L.E., Pohlmeyer, E.A., Anaya, M., Anderson, W.S., Wester, B.A.: Simultaneous classification of bilateral hand gestures using bilateral microelectrode recordings in a tetraplegic patient.(2020).https://doi.org/10.1101/2020.06.02.20116913

  92. In a First, Patient controls two prosthetic arms with his thoughts https://www.jhuapl.edu/PressRelease/191016

  93. Katyal, K.D., Johannes, M.S., McGee, T.G., Harris, A.J., Armiger, R.S., Firpi, A.H., McMullen, D., Hotson, G., Fifer, M.S., Crone, N.E., Vogelstein, R.J.: HARMONIE: A multimodal control framework for human assistive robotics. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering, pp. 1274–1278. IEEE (2013)

    Google Scholar 

  94. Cancio, J.M., Ikeda, A.J., Barnicott, S.L., Childers, W.L., Alderete, J.F., Goff, B.J.: Upper extremity amputation and prosthetics care across the active duty military and veteran populations. Phys. Med. Rehabil. Clin. 30(1), 73–87 (2019)

    Google Scholar 

  95. Management of Upper Extremity Amputation Rehabilitation Working Group: VA/DoD clinical practice guideline for the management of upper extremity amputation rehabilitation. Department of Veterans Affairs, Department of Defense (2014)

    Google Scholar 

  96. Amputation Coalition of America: A team-based approach to amputee rehabilitation. Military in-Step. (2005). Available at: http://www.amputee-coalition.org/military-instep/amputee-rehab.html

  97. Woodward, R.B., Hargrove, L.J.: Adapting myoelectric control in real-time using a virtual environment. J. Neuroeng. Rehabil. 16(1), 11 (2019)

    Google Scholar 

  98. Pezzin, L.E., Dillingham, T.R., MacKenzie, E.J., Ephraim, P., Rossbach, P.: Use and satisfaction with prosthetic limb devices and related services. Arch. Phys. Med. Rehabil. 85(5), 723–729 (2004)

    Google Scholar 

  99. Resnik, L., Etter, K., Klinger, S.L., Kambe, C.: Using virtual reality environment to facilitate training with advanced upper-limb prosthesis. J. Rehabil. Res. Dev. 48(6), 707–718 (2011)

    Google Scholar 

  100. Tabor, A., Bateman, S., Scheme, E., Flatla, D.R., Gerling, K.: Designing game-based myoelectric prosthesis training. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 1352–1363 (May 2017)

    Google Scholar 

  101. Mejía, J.A., Hernández, G., Toledo, C., Mercado, J., Vera, A., Leija, L., Gutiérrez, J.: Upper limb rehabilitation therapies based in videogames technology review. In: IEEE, 2019 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges, pp. 1–5. IEEE (2019)

    Google Scholar 

  102. McCarthy, M.L., Ewashko, T., MacKenzie, E.J.: Determinants of use of outpatient rehabilitation services following upper extremity injury. J. Hand Ther. 11(1), 32–38 (1998)

    Google Scholar 

  103. Gorman, C., Gustafsson, L.: The use of augmented reality for rehabilitation after stroke: A narrative review. Disabil Rehabil: Assist. Technol., 1–9 (2020)

    Google Scholar 

  104. Boas, Y.A.G.V., Overview of virtual reality technologies. In: Interactive Multimedia Conference, Vol. 2013 (2013)

    Google Scholar 

  105. Kourtesis, P., Collina, S., Doumas, L.A., MacPherson, S.E.: Validation of the virtual reality neuroscience questionnaire: maximum duration of immersive virtual reality sessions without the presence of pertinent adverse symptomatology. Front. Hum. Neurosci. 13, 417 (2019)

    Google Scholar 

  106. Abtahi, P., Landry, B., Yang, J., Pavone, M., Follmer, S., Landay, J.A.: Beyond the force: Using quadcopters to appropriate objects and the environment for haptics in virtual reality. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–13 (May 2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcimar B. Soares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sun, Y., Hunt, C.L., Lamounier, E.A., Soares, A.B. (2023). Neurorehabilitation with Virtual and Augmented Reality Tools. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_49

Download citation

Publish with us

Policies and ethics