Skip to main content

Noninvasive and Invasive BCIs and Hardware and Software Components for BCIs

  • Reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Brain-computer interfaces (BCIs) are systems that use direct real-time recordings of brain activity for communication and control. This chapter introduces the current state of the art of noninvasive and invasive BCIs. We start with a brief conceptual overview, discuss different types of input signals, and outline common control signals with some typical applications. We also describe the hardware and software needed to run BCI experiments. In this spirit, we illustrate some practical BCI systems that are available for communication, stroke rehabilitation, consciousness assessment, and functional brain mapping. We conclude this chapter with future perspectives about emerging BCI systems. For example, high-density EEG and ECoG systems and methods, noninvasive and invasive brain stimulation techniques, and hybrid fusion feedback are advancing quickly and could foster new directions in research and clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALS:

Amyotrophic lateral sclerosis

BCI:

Brain-computer interface

CRS-r:

Coma-recovery scale-revised

CSP:

Common spatial patterns

cVEP:

Code-based visual evoked potential

DBS:

Direct brain stimulation

DOC:

Disorders of consciousness

ECoG:

Electrocorticogram

ECS:

Electrical cortical stimulation

EEG:

Electroencephalogram

EMG:

Electromyogram

ERD:

Event-related desynchronization

ERP:

Event-related potential

ERS:

Event-related synchronization

FET:

Field effect transistor

fMRI:

Functional magnetic resonance imaging

fNIRS:

Functional near infrared spectroscopy

HFO:

High frequency oscillation

HGA:

High-gamma activation

LDA:

Linear discriminant analysis

LFB:

Low frequency band

LIS:

Locked-in syndrome

MCS:

Minimal consciousness state

MEG:

Magnetoencephalogram

MRCP:

Movement-related cortical potential

NIBS:

Noninvasive brain stimulation

SCP:

Slow cortical potentials

SMR:

Sensorimotor rhythm

SSVEP:

Steady-state visual evoked potential

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

UWS:

Unresponsive wakefulness syndrome

References

  1. Allison, B.Z., Kübler, A., Jin, J.: 30+ years of P300 brain-computer interfaces. Psychophysiology. 57, e13569–e13569 (2020)

    Article  Google Scholar 

  2. Babiloni, C., Blinowska, K., Bonanni, L., Cichocki, A., De Haan, W., Del Percio, C., Dubois, B., Escudero, J., Fernández, A., Frisoni, G., Guntekin, B., Hajos, M., Hampel, H., Ifeachor, E., Kilborn, K., Kumar, S., Johnsen, K., Johannsson, M., Jeong, J., LeBeau, F., Lizio, R., Lopes da Silva, F., Maestú, F., McGeown, W.J., McKeith, I., Moretti, D.V., Nobili, F., Olichney, J., Onofrj, M., Palop, J.J., Rowan, M., Stocchi, F., Struzik, Z.M., Tanila, H., Teipel, S., Taylor, J.P., Weiergräber, M., Yener, G., Young-Pearse, T., Drinkenburg, W.H., Randall, F.: What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol. Aging. 85, 58–73 (2020). https://doi.org/10.1016/j.neurobiolaging.2019.09.008

    Article  Google Scholar 

  3. Bell, C.J., Shenoy, P., Chalodhorn, R., Rao, R.P.: Control of a humanoid robot by a noninvasive brain–computer interface in humans. J. Neural Eng. 5(2), 214 (2008)

    Article  Google Scholar 

  4. Bin, G., Gao, X., Wang, Y., Hong, B., Gao, S.: VEP-based brain-computer interfaces: time, frequency, and code modulations [Research Frontier]. IEEE Comput. Intell. Mag. 4, 22–26 (2009). https://doi.org/10.1109/MCI.2009.934562

    Article  Google Scholar 

  5. Bin, G., Gao, X., Wang, Y., Li, Y., Hong, B., Gao, S.: A high-speed BCI based on code modulation VEP. J. Neural Eng. 8, 025015 (2011). https://doi.org/10.1088/1741-2560/8/2/025015

    Article  Google Scholar 

  6. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralysed. Nature. 398, 297–298 (1999)

    Article  Google Scholar 

  7. Bleichner, M.G., Freudenburg, Z.V., Jansma, J.M., Aarnoutse, E.J., Vansteensel, M.J., Ramsey, N.F.: Give me a sign: decoding four complex hand gestures based on high-density ECoG. Brain Struct. Funct. 221, 203–216 (2016). https://doi.org/10.1007/s00429-014-0902-x

    Article  Google Scholar 

  8. Branco, M.P., Freudenburg, Z.V., Aarnoutse, E.J., Bleichner, M.G., Vansteensel, M.J., Ramsey, N.F.: Decoding hand gestures from primary somatosensory cortex using high-density ECoG. NeuroImage. 147, 130–142 (2017). https://doi.org/10.1016/j.neuroimage.2016.12.004

    Article  Google Scholar 

  9. Brouwer, A.-M., van Erp, J.B.F.: A tactile P300 brain-computer interface. Front. Neurosci. 4, 19 (2010). https://doi.org/10.3389/fnins.2010.00019

    Article  Google Scholar 

  10. Brunner, P., Ritaccio, A.L., Emrich, J.F., Bischof, H., Schalk, G.: Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Front. Neurosci. 5 (2011). https://doi.org/10.3389/fnins.2011.00005

  11. Brunner, C., Andreoni, G., Bianchi, L., Blankertz, B., Breitwieser, C., Kanoh, S.I., Kothe, C.A., Lécuyer, A., Makeig, S., Mellinger, J., Perego, P.: BCI software platforms. In: Towards Practical Brain-Computer Interfaces, pp. 303–331. Springer, Berlin/Heidelberg (2012)

    Chapter  Google Scholar 

  12. Chao, Z.C., Nagasaka, Y., Fujii, N.: Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys. Front. Neuroeng. 3 (2010). https://doi.org/10.3389/fneng.2010.00003

  13. Chen, C., Shin, D., Watanabe, H., Nakanishi, Y., Kambara, H., Yoshimura, N., Nambu, A., Isa, T., Nishimura, Y., Koike, Y.: Prediction of hand trajectory from electrocorticography signals in primary motor cortex. PLoS One. 8, e83534 (2013). https://doi.org/10.1371/journal.pone.0083534

    Article  Google Scholar 

  14. Chen, P.C., Baumgartner, J., Seo, J.H., Korostenskaja, M., Lee, K.H.: Bilateral intracranial EEG with corpus callosotomy may uncover seizure focus in nonlocalizing focal epilepsy. Seizure. 24, 63–69 (2015). https://doi.org/10.1016/j.seizure.2014.08.011

    Article  Google Scholar 

  15. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. I.E.E.E. Trans. Biomed. Eng. 49, 1181–1186 (2002)

    Google Scholar 

  16. Chestek, C.A., Gilja, V., Blabe, C.H., Foster, B.L., Shenoy, K.V., Parvizi, J., Henderson, J.M.: Hand posture classification using electrocorticography signals in the gamma band over human sensorimotor brain areas. J. Neural Eng. 10, 026002 (2013). https://doi.org/10.1088/1741-2560/10/2/026002

    Article  Google Scholar 

  17. Cho, W., Heilinger, A., Ortner, R., Swift, J., Edlinger, G., Guger, C., Murovec, N., Xu, R., Zehetner, M., Schobesberger, S.: Motor rehabilitation for hemiparetic stroke patients using a brain-computer interface method. In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1001–1005. IEEE (2018). https://doi.org/10.1109/SMC.2018.00178

    Chapter  Google Scholar 

  18. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain–computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4, 219–226 (2007). https://doi.org/10.1088/1741-2560/4/3/007

    Article  Google Scholar 

  19. Edwards, E.: High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. J. Neurophysiol. 94, 4269–4280 (2005). https://doi.org/10.1152/jn.00324.2005

    Article  Google Scholar 

  20. Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988). https://doi.org/10.1016/0013-4694(88)90149-6

    Article  Google Scholar 

  21. Fazel-Rezai, R., Allison, B.Z., Guger, C., Sellers, E.W., Kleih, S.C., Kübler, A.: P300 brain computer interface: current challenges and emerging trends. Front. Neuroeng. 5, 14 (2012). https://doi.org/10.3389/fneng.2012.00014

    Article  Google Scholar 

  22. Gharabaghi, A.: Activity-dependent brain stimulation and robot-assisted movements for use-dependent plasticity. Clin. Neurophysiol. 126, 853–854 (2015). https://doi.org/10.1016/j.clinph.2014.09.004

    Article  Google Scholar 

  23. Gruenwald, J., Znobishchev, A., Kapeller, C., Kamada, K., Scharinger, J., Guger, C.: Time-variant linear discriminant analysis improves hand gesture and finger movement decoding for invasive brain-computer interfaces. Front. Neurosci. 13, 901 (2019). https://doi.org/10.3389/fnins.2019.00901

    Article  Google Scholar 

  24. Guger, C., Ramoser, H., Pfurtscheller, G.: Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI). Rehabil. Eng. IEEE Trans. 8, 447–456 (2000)

    Article  Google Scholar 

  25. Guger, C., Schlogl, A., Neuper, C., Walterspacher, D., Strein, T., Pfurtscheller, G.: Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Trans. Neural Syst. Rehabil. Eng. 9, 49–58 (2001)

    Article  Google Scholar 

  26. Guger, C., Allison, B.Z., Großwindhager, B., Prückl, R., Hintermüller, C., Kapeller, C., Bruckner, M., Krausz, G., Edlinger, G.: How many people could use an SSVEP BCI? Front. Neurosci. 6 (2012a). https://doi.org/10.3389/fnins.2012.00169

  27. Guger, C., Krausz, G., Allison, B.Z., Edlinger, G.: Comparison of dry and gel based electrodes for P300 brain–computer interfaces. Front. Neurosci. 6, 60 (2012b). https://doi.org/10.3389/fnins.2012.00060

    Article  Google Scholar 

  28. Guger, C., Ortner, R., Dimov, S., Allison, B.: A comparison of face speller approaches for P300 BCIs. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Presented at the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 004809–004812. IEEE, Budapest (2016). https://doi.org/10.1109/SMC.2016.7844989

    Chapter  Google Scholar 

  29. Guger, C., Allison, B., Lebedev, M. (eds.): Brain-Computer Interface Research: A State-of-the-Art Summary 6, SpringerBriefs in Electrical and Computer Engineering. Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-64373-1

    Book  Google Scholar 

  30. Guger, C., Spataro, R., Allison, B.Z., Heilinger, A., Ortner, R., Cho, W., La Bella, V.: Complete locked-in and locked-in patients: command following assessment and communication with vibro-tactile P300 and motor imagery brain-computer interface tools. Front. Neurosci. 11 (2017b). https://doi.org/10.3389/fnins.2017.00251

  31. Guger, C., Spataro, R., Pellas, F., Allison, B.Z., Heilinger, A., Ortner, R., Cho, W., Xu, R., La Bella, V., Edlinger, G., Annen, J., Mandalá, G., Chatelle, C., Laureys, S.: Assessing command-following and communication with vibro-tactile P300 brain-computer interface tools in patients with unresponsive wakefulness syndrome. Front. Neurosci. 12, 423 (2018). https://doi.org/10.3389/fnins.2018.00423

    Article  Google Scholar 

  32. Gunduz, A., Schalk, G.: 16 ECoG-based BCIs. In: Brain–Computer Interfaces Handbook: Technological and Theoretical Advances, p. 297. CRC Press (2018)

    Chapter  Google Scholar 

  33. Hebb, A.O., Zhang, J.J., Mahoor, M.H., Tsiokos, C., Matlack, C., Chizeck, H.J., Pouratian, N.: Creating the feedback loop. Neurosurg. Clin. N. Am. 25, 187–204 (2014). https://doi.org/10.1016/j.nec.2013.08.006

    Article  Google Scholar 

  34. Herff, C., de Pesters, A., Heger, D., Brunner, P., Schalk, G., Schultz, T.: Towards Continuous Speech Recognition for BCI, pp. 21–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57132-4_3

    Book  Google Scholar 

  35. Hiremath, S.V., Tyler-Kabara, E.C., Wheeler, J.J., Moran, D.W., Gaunt, R.A., Collinger, J.L., Foldes, S.T., Weber, D.J., Chen, W., Boninger, M.L., Wang, W.: Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS One. 12, e0176020 (2017). https://doi.org/10.1371/journal.pone.0176020

    Article  Google Scholar 

  36. Hochberg, L.R., Serruya, M.D., Friehs, G.M., Mukand, J.A., Saleh, M., Caplan, A.H., Branner, A., Chen, D., Penn, R.D., Donoghue, J.P.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 442, 164–171 (2006). https://doi.org/10.1038/nature04970

    Article  Google Scholar 

  37. Hotson, G., McMullen, D.P., Fifer, M.S., Johannes, M.S., Katyal, K.D., Para, M.P., Armiger, R., Anderson, W.S., Thakor, N.V., Wester, B.A.: Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017 (2016)

    Article  Google Scholar 

  38. Hummel, F.C., Cohen, L.G.: Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol. 5, 708–712 (2006)

    Article  Google Scholar 

  39. Inoue, Y., Mao, H., Suway, S.B., Orellana, J., Schwartz, A.B.: Decoding arm speed during reaching. Nat. Commun. 9, 5243 (2018). https://doi.org/10.1038/s41467-018-07647-3

    Article  Google Scholar 

  40. Jahanshahi, M., Hallett, M.: The Bereitschaftspotential: Movement-Related Cortical Potentials. Springer (2003)

    Book  Google Scholar 

  41. Jiang, T., Jiang, T., Wang, T., Mei, S., Liu, Q., Li, Y., Wang, X., Prabhu, S., Sha, Z., Ince, N.F.: Characterization and decoding the spatial patterns of hand extension/flexion using high-density ECoG. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 370–379 (2017). https://doi.org/10.1109/TNSRE.2016.2647255

    Article  Google Scholar 

  42. Jin, J., Allison, B.Z., Kaufmann, T., Kübler, A., Zhang, Y., Wang, X., Cichocki, A.: The changing face of P300 BCIs: a comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLoS One. 7(11), e49688 (2012)

    Article  Google Scholar 

  43. Kamada, K., Kapeller, C., Takeuchi, F., Gruenwald, J., Guger, C.: Tailor-made surgery based on functional networks for intractable epilepsy. Front. Neurol. 11, 73 (2020). https://doi.org/10.3389/fneur.2020.00073

    Article  Google Scholar 

  44. Kapeller, C., Hintermüller, C., Abu-Alqumsan, M., Prückl, R., Peer, A., Guger, C.: A BCI using VEP for continuous control of a mobile robot. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 5254–5257. IEEE (2013)

    Chapter  Google Scholar 

  45. Kapeller, C., Kamada, K., Ogawa, H., Prueckl, R., Scharinger, J., Guger, C.: An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study. Front. Syst. Neurosci. 8, 139 (2014a). https://doi.org/10.3389/fnsys.2014.00139

    Article  Google Scholar 

  46. Kapeller, C., Schneider, C., Kamada, K., Ogawa, H., Kunii, N., Ortner, R., Pruckl, R., Guger, C.: Single trial detection of hand poses in human ECoG using CSP based feature extraction. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4599–4602. IEEE (2014b). https://doi.org/10.1109/EMBC.2014.6944648

    Chapter  Google Scholar 

  47. Kapeller, C., Korostenskaja, M., Prueckl, R., Chen, P.-C., Lee, K.H., Westerveld, M., Salinas, C.M., Cook, J.C., Baumgartner, J.E., Guger, C.: CortiQ-based real-time functional mapping for epilepsy surgery. J. Clin. Neurophysiol. 32, e12–e22 (2015). https://doi.org/10.1097/WNP.0000000000000131

    Article  Google Scholar 

  48. Kapeller, C., Dimov, S., Kamada, K., Ogawa, H., Prueckl, R., Kunii, N., Guger, C.: Mapping language activity with ECoG and ECS. Presented at the 22nd Annual Meeting of the Organization for Human Brain Mapping, Geneva (2016)

    Google Scholar 

  49. Kaufmann, T., Schulz, S.M., Grünzinger, C., Kübler, A.: Flashing characters with famous faces improves ERP-based brain–computer interface performance. J. Neural Eng. 8(5), 056016 (2011)

    Article  Google Scholar 

  50. Kaufmann, T., Holz, E.M., Kübler, A.: Comparison of tactile, auditory, and visual modality for brain-computer interface use: a case study with a patient in the locked-in state. Front. Neurosci. 7, 129 (2013). https://doi.org/10.3389/fnins.2013.00129

    Article  Google Scholar 

  51. Kerous, B., Skola, F., Liarokapis, F.: EEG-based BCI and video games: a progress report. Virtual Reality. 22, 119–135 (2018). https://doi.org/10.1007/s10055-017-0328-x

    Article  Google Scholar 

  52. Kondziella, D., Bender, A., Diserens, K., van Erp, W., Estraneo, A., Formisano, R., Laureys, S., Naccache, L., Ozturk, S., Rohaut, B., Sitt, J.D.: European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 27(5), 741–756 (2020)

    Article  Google Scholar 

  53. Korostenskaja, M., Harris, E., Giovanetti, C., Horn, P., Wang, Y., Rose, D., Fujiwara, H., Xiang, J.: Magnetoencephalography reveals altered auditory information processing in youth with obsessive-compulsive disorder. Psychiatry Res. Neuroimaging. 212, 132–140 (2013). https://doi.org/10.1016/j.pscychresns.2012.11.011

    Article  Google Scholar 

  54. Korostenskaja, M., Chen, P.-C., Salinas, C.M., Westerveld, M., Brunner, P., Schalk, G., Cook, J.C., Baumgartner, J., Lee, K.H.: Real-time functional mapping: potential tool for improving language outcome in pediatric epilepsy surgery: case report. J. Neurosurg. Pediatr. 14, 287–295 (2014). https://doi.org/10.3171/2014.6.PEDS13477

    Article  Google Scholar 

  55. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: A comparison of classification techniques for the P300 Speller. J. Neural Eng. 3, 299–305 (2006). https://doi.org/10.1088/1741-2560/3/4/007

    Article  Google Scholar 

  56. Kübler, A.: Brain-computer interfaces for communication in paralysed patients and implications for disorders of consciousness. In: The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology, pp. 217–233. Academic (2009)

    Chapter  Google Scholar 

  57. Kuzum, D., Takano, H., Shim, E., Reed, J.C., Juul, H., Richardson, A.G., de Vries, J., Bink, H., Dichter, M.A., Lucas, T.H., Coulter, D.A., Cubukcu, E., Litt, B.: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat. Commun. 5, 5259 (2014). https://doi.org/10.1038/ncomms6259

    Article  Google Scholar 

  58. Lefaucheur, J.-P., André-Obadia, N., Antal, A., Ayache, S.S., Baeken, C., Benninger, D.H., Cantello, R.M., Cincotta, M., de Carvalho, M., De Ridder, D., Devanne, H., Di Lazzaro, V., Filipović, S.R., Hummel, F.C., Jääskeläinen, S.K., Kimiskidis, V.K., Koch, G., Langguth, B., Nyffeler, T., Oliviero, A., Padberg, F., Poulet, E., Rossi, S., Rossini, P.M., Rothwell, J.C., Schönfeldt-Lecuona, C., Siebner, H.R., Slotema, C.W., Stagg, C.J., Valls-Sole, J., Ziemann, U., Paulus, W., Garcia-Larrea, L.: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014). https://doi.org/10.1016/J.CLINPH.2014.05.021

    Article  Google Scholar 

  59. Lefaucheur, J.-P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M.A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., Vanneste, S., Ziemann, U., Garcia-Larrea, L., Paulus, W.: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 128, 56–92 (2017). https://doi.org/10.1016/J.CLINPH.2016.10.087

    Article  Google Scholar 

  60. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W.: A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63–71 (2004). https://doi.org/10.1088/1741-2560/1/2/001

    Article  Google Scholar 

  61. Liu, S., Sha, Z., Sencer, A., Aydoseli, A., Bebek, N., Abosch, A., Henry, T., Gurses, C., Ince, N.F.: Exploring the time–frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy. J. Neural Eng. 13 (2016). https://doi.org/10.1088/1741-2560/13/2/026026

  62. Lupu, R.G., Irimia, D.C., Ungureanu, F., Poboroniuc, M.S., Moldoveanu, A.: BCI and FES based therapy for stroke rehabilitation using VR facilities. Wirel. Commun. Mob. Comput. 2018, 1–8 (2018). https://doi.org/10.1155/2018/4798359

    Article  Google Scholar 

  63. Maggio, M.G., Naro, A., La Rosa, G., Cambria, A., Lauria, P., Billeri, L., et al.: Virtual reality based cognitive rehabilitation in minimally conscious state: a case report with EEG findings and systematic literature review. Brain Sci. 10(7), 414 (2020)

    Article  Google Scholar 

  64. Martin, S., Iturrate, I., Brunner, P., Millán, J.D.R., Schalk, G., Knight, R.T., Pasley, B.N.: Individual word classification during imagined speech using intracranial recordings. In: Brain-Computer Interface Research, pp. 83–91. Springer, Cham (2019)

    Chapter  Google Scholar 

  65. Masvidal-Codina, E., Illa, X., Dasilva, M., Calia, A.B., Dragojević, T., Vidal-Rosas, E.E., Prats-Alfonso, E., Martínez-Aguilar, J., De la Cruz, J.M., Garcia-Cortadella, R., Godignon, P., Rius, G., Camassa, A., Del Corro, E., Bousquet, J., Hébert, C., Durduran, T., Villa, R., Sanchez-Vives, M.V., Garrido, J.A., Guimerà-Brunet, A.: High-resolution mapping of infraslow cortical brain activity enabled by graphene microtransistors. Nat. Mater. 18, 280–288 (2019). https://doi.org/10.1038/s41563-018-0249-4

    Article  Google Scholar 

  66. McFarland, D.J., Sarnacki, W.A., Wolpaw, J.R.: Electroencephalographic (EEG) control of three-dimensional movement. J. Neural Eng. 7, 036007 (2010). https://doi.org/10.1088/1741-2560/7/3/036007

    Article  Google Scholar 

  67. Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S.: Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans. Rehab. Eng. 8, 211–214 (2000). https://doi.org/10.1109/86.847819

    Article  Google Scholar 

  68. Miller, K.J., Leuthardt, E.C., Schalk, G., Rao, R.P.N., Anderson, N.R., Moran, D.W., Miller, J.W., Ojemann, J.G.: Spectral changes in cortical surface potentials during motor movement. J. Neurosci. 27, 2424–2432 (2007). https://doi.org/10.1523/JNEUROSCI.3886-06.2007

    Article  Google Scholar 

  69. Miller, K.J., Zanos, S., Fetz, E.E., den Nijs, M., Ojemann, J.G.: Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J. Neurosci. 29, 3132–3137 (2009). https://doi.org/10.1523/JNEUROSCI.5506-08.2009

    Article  Google Scholar 

  70. Miller, K.J., Schalk, G., Hermes, D., Ojemann, J.G., Rao, R.P.: Spontaneous decoding of the timing and content of human object perception from cortical surface recordings reveals complementary information in the event-related potential and broadband spectral change. PLoS Comput. Biol. 12(1), e1004660 (2016)

    Article  Google Scholar 

  71. Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110, 787–798 (1999)

    Article  Google Scholar 

  72. Murovec, N., Heilinger, A., Xu, R., Ortner, R., Spataro, R., La Bella, V., Miao, Y., Jin, J., Chatelle, C., Laureys, S., Allison, B.Z., Guger, C.: Effects of a vibro-tactile P300 based brain-computer interface on the coma recovery scale-revised in patients with disorders of consciousness. Front. Neurosci. 14, 294 (2020). https://doi.org/10.3389/fnins.2020.00294

    Article  Google Scholar 

  73. Nagel, S., Spüler, M.: World’s fastest brain-computer interface: combining EEG2Code with deep learning. PLoS One. 14(9), e0221909 (2019)

    Article  Google Scholar 

  74. Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C., Kambara, H., Yoshimura, N., Hirata, M., Yoshimine, T., Koike, Y.: Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex. PLoS One. 8, e72085 (2013). https://doi.org/10.1371/journal.pone.0072085

    Article  Google Scholar 

  75. Nakanishi, Y., Yanagisawa, T., Shin, D., Chen, C., Kambara, H., Yoshimura, N., Fukuma, R., Kishima, H., Hirata, M., Koike, Y.: Decoding fingertip trajectory from electrocorticographic signals in humans. Neurosci. Res. 85, 20–27 (2014). https://doi.org/10.1016/j.neures.2014.05.005

    Article  Google Scholar 

  76. Nakanishi, M., Wang, Y., Chen, X., Wang, Y.T., Gao, X., Jung, T.P.: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans. Biomed. Eng. 65(1), 104–112 (2017)

    Article  Google Scholar 

  77. Nijboer, F., Furdea, A., Gunst, I., Mellinger, J., McFarland, D.J., Birbaumer, N., Kübler, A.: An auditory brain–computer interface (BCI). J. Neurosci. Methods. 167, 43–50 (2008)

    Article  Google Scholar 

  78. Pan, G., Li, J.-J., Qi, Y., Yu, H., Zhu, J.-M., Zheng, X.-X., Wang, Y.-M., Zhang, S.-M.: Rapid decoding of hand gestures in electrocorticography using recurrent neural networks. Front. Neurosci. 12 (2018). https://doi.org/10.3389/fnins.2018.00555

  79. Parastarfeizabadi, M., Kouzani, A.Z.: Advances in closed-loop deep brain stimulation devices. J. Neuro Eng. Rehabil. 14, 79 (2017). https://doi.org/10.1186/s12984-017-0295-1

    Article  Google Scholar 

  80. Pei, X., Leuthardt, E.C., Gaona, C.M., Brunner, P., Wolpaw, J.R., Schalk, G.: Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. NeuroImage. 54, 2960–2972 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.029

    Article  Google Scholar 

  81. Pfurtscheller, G.: Functional brain imaging based on ERD/ERS. Vis. Res. 41, 1257–1260 (2001)

    Article  Google Scholar 

  82. Pfurtscheller, G., Lopes Da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857 (1999)

    Article  Google Scholar 

  83. Pfurtscheller, G., Neuper, C.: Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997)

    Article  Google Scholar 

  84. Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H.: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage. 31, 153–159 (2006a). https://doi.org/10.1016/j.neuroimage.2005.12.003

    Article  Google Scholar 

  85. Pfurtscheller, G., Leeb, R., Keinrath, C., Friedman, D., Neuper, C., Guger, C., Slater, M.: Walking from thought. Brain Res. 1071, 145–152 (2006b). https://doi.org/10.1016/j.brainres.2005.11.083

    Article  Google Scholar 

  86. Polich, J.: Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007). https://doi.org/10.1016/j.clinph.2007.04.019

    Article  Google Scholar 

  87. Prueckl, R., Kapeller, C., Potes, C., Korostenskaja, M., Schalk, G., Lee, K.H., Guger, C.: cortiQ-clinical software for electrocorticographic real-time functional mapping of the eloquent cortex. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 6365–6368. IEEE (2013)

    Chapter  Google Scholar 

  88. Radüntz, T.: Signal quality evaluation of emerging EEG devices. Front. Physiol. 9, 98 (2018). https://doi.org/10.3389/fphys.2018.00098

    Article  Google Scholar 

  89. Riès, S.K., Dhillon, R.K., Clarke, A., King-Stephens, D., Laxer, K.D., Weber, P.B., Kuperman, R.A., Auguste, K.I., Brunner, P., Schalk, G., Lin, J.J., Parvizi, J., Crone, N.E., Dronkers, N.F., Knight, R.T.: Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity. Proc. Natl. Acad. Sci. 114, E4530–E4538 (2017). https://doi.org/10.1073/PNAS.1620669114

    Article  Google Scholar 

  90. Schalk, G., Miller, K.J., Anderson, N.R., Wilson, J.A., Smyth, M.D., Ojemann, J.G., Moran, D.W., Wolpaw, J.R., Leuthardt, E.C.: Two-dimensional movement control using electrocorticographic signals in humans. J. Neural Eng. 5, 75–84 (2008). https://doi.org/10.1088/1741-2560/5/1/008

    Article  Google Scholar 

  91. Sebastián-Romagosa, M., Udina, E., Ortner, R., Dinarès-Ferran, J., Cho, W., Murovec, N., Matencio-Peralba, C., Sieghartsleitner, S., Allison, B.Z., Guger, C.: EEG biomarkers related with the functional state of stroke patients. Front. Neurosci. 14, 582 (2020). https://doi.org/10.3389/fnins.2020.00582

    Article  Google Scholar 

  92. Sellers, E.W., Donchin, E.: A P300-based brain–computer interface: initial tests by ALS patients. Clin. Neurophysiol. 117, 538–548 (2006). https://doi.org/10.1016/j.clinph.2005.06.027

    Article  Google Scholar 

  93. Shimoda, K., Nagasaka, Y., Chao, Z.C., Fujii, N.: Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques. J. Neural Eng. 9, 036015 (2012). https://doi.org/10.1088/1741-2560/9/3/036015

    Article  Google Scholar 

  94. Sinai, A.: Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain. 128, 1556–1570 (2005). https://doi.org/10.1093/brain/awh491

    Article  Google Scholar 

  95. Spüler, M., Rosenstiel, W., Bogdan, M.: Online adaptation of a c-VEP Brain-Computer Interface(BCI) based on error-related potentials and unsupervised learning. PLoS One. 7, e51077 (2012). https://doi.org/10.1371/journal.pone.0051077

    Article  Google Scholar 

  96. Swift, J.R., Coon, W.G., Guger, C., Brunner, P., Bunch, M., Lynch, T., Frawley, B., Ritaccio, A.L., Schalk, G.: Passive functional mapping of receptive language areas using electrocorticographic signals. Clin. Neurophysiol. 129, 2517–2524 (2018). https://doi.org/10.1016/j.clinph.2018.09.007

    Article  Google Scholar 

  97. Taplin, A.M., de Pesters, A., Brunner, P., Hermes, D., Dalfino, J.C., Adamo, M.A., Ritaccio, A.L., Schalk, G.: Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav. Case Rep. 5, 46–51 (2016)

    Article  Google Scholar 

  98. Thibaut, A., Bruno, M.-A., Ledoux, D., Demertzi, A., Laureys, S.: tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology. 82, 1112–1118 (2014). https://doi.org/10.1212/WNL.0000000000000260

    Article  Google Scholar 

  99. Towle, V.L., Yoon, H.-A., Castelle, M., Edgar, J.C., Biassou, N.M., Frim, D.M., Spire, J.-P., Kohrman, M.H.: ECoG gamma activity during a language task: differentiating expressive and receptive speech areas. Brain. 131, 2013–2027 (2008). https://doi.org/10.1093/brain/awn147

    Article  Google Scholar 

  100. Tramonte, S., Sorbello, R., Guger, C., Chella, A.: Acceptability study of A3-K3 robotic architecture for a neurorobotics painting. Front. Neurorobot. 12, 81 (2019). https://doi.org/10.3389/fnbot.2018.00081

    Article  Google Scholar 

  101. Verma, P., Heilinger, A., Reitner, P., Gruenwald, J., Franklin, D., Guger, C.: Performance investigation of brain-computer interfaces combining EEG and fNIRS for motor imagery tasks. In: 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Presented at the 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, Bari (2019)

    Google Scholar 

  102. Vidal, J.J.: Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2, 157–180 (1973)

    Article  Google Scholar 

  103. Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., Weber, D.J., Wodlinger, B., Vinjamuri, R.K., Ashmore, R.C., Kelly, J.W., Boninger, M.L.: An electrocorticographic brain interface in an individual with tetraplegia. PLoS One. 8, e55344 (2013). https://doi.org/10.1371/journal.pone.0055344

    Article  Google Scholar 

  104. Watanabe, H., Sato, M.-A., Suzuki, T., Nambu, A., Nishimura, Y., Kawato, M., Isa, T.: Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex. J. Neural Eng. 9, 036006 (2012). https://doi.org/10.1088/1741-2560/9/3/036006

    Article  Google Scholar 

  105. Wei, P., He, W., Zhou, Y., Wang, L.: Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. In: IEEE transactions on neural systems and rehabilitation engineering a publication of the IEEE Engineering in Medicine and Biology Society, pp. 1–12 (2013). https://doi.org/10.1109/TNSRE.2013.2249111

  106. Weiskopf, N., Mathiak, K., Bock, S.W., Scharnowski, F., Veit, R., Grodd, W., Goebel, R., Birbaumer, N.: Principles of a Brain-Computer Interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans. Biomed. Eng. 51, 966–970 (2004). https://doi.org/10.1109/TBME.2004.827063

    Article  Google Scholar 

  107. Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., Nicolelis, M.A.: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature. 408, 361–365 (2000). https://doi.org/10.1038/35042582

    Article  Google Scholar 

  108. Wolpaw, J.R., McFarland, D.J.: Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. 101, 17849–17854 (2004). https://doi.org/10.1073/pnas.0403504101

    Article  Google Scholar 

  109. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78, 252–259 (1991)

    Article  Google Scholar 

  110. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  111. Xu, R., Jiang, N., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications. I.E.E.E. Trans. Biomed. Eng. 61, 288–296 (2014a). https://doi.org/10.1109/TBME.2013.2294203

    Article  Google Scholar 

  112. Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Asín, G., Moreno, J.C., Pons, J.L., Dremstrup, K., Farina, D.: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 61, 2092–2101 (2014b). https://doi.org/10.1109/TBME.2014.2313867

    Article  Google Scholar 

  113. Xu, R., Jiang, N., Dosen, S., Lin, C., Mrachacz-Kersting, N., Dremstrup, K., Farina, D.: Endogenous sensory discrimination and selection by a fast brain switch for a high transfer rate brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 901–910 (2016). https://doi.org/10.1109/TNSRE.2016.2523565

    Article  Google Scholar 

  114. Yuan, H., He, B.: Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives. IEEE Trans. Biomed. Eng. 61, 1425–1435 (2014). https://doi.org/10.1109/TBME.2014.2312397

    Article  Google Scholar 

  115. Zhang, L., Xing, G., Fan, Y., Guo, Z., Chen, H., Mu, Q.: Short- and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clin. Rehabil., 026921551769238 (2017). https://doi.org/10.1177/0269215517692386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Guger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Guger, C., Grünwald, J., Xu, R. (2023). Noninvasive and Invasive BCIs and Hardware and Software Components for BCIs. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_34

Download citation

Publish with us

Policies and ethics