Skip to main content

State Space Models for Spike Data

  • Reference work entry
  • First Online:
Handbook of Neuroengineering
  • 252 Accesses

Abstract

State-space methods provide powerful tools to solve a variety of neural data analysis problems. For spike train data, they are used to decode signals from population spiking activity, to track changes in neural coding properties due to learning and adaptation, to infer biophysical mechanisms underlying spike generation, and many other applications. At the heart of these methods is a set of two model components: a state model that defines how a signal or collection of signals can change through time, and a point process observation model that describes how those signals influence neural spiking. In this chapter, we explain how to define these models to address neural coding problems. We derive point process filter and smoother algorithms to estimate signals from spiking data, Monte Carlo methods to improve the computational efficiency of these algorithms, and an approximate expectation-maximization (E-M) algorithm to estimate the model parameters. We demonstrate the application of these methods to the problem for estimating a rat’s movement on a circular maze from a population of simulated place cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

E-M:

Expectation-Maximization

E-step:

Expectation Step

HPD:

Highest Posterior Density

ML:

Maximum Likelihood

M-step:

Maximization Step

rMSE:

Root-Mean-Squared Error

SMC:

Sequential Monte Carlo

SSPPF:

Stochastic State Point Process Filter

References

  1. Panzeri, S., Harvey, C.D., Piasini, E., Latham, P.E., Fellin, T.: Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron. 93(3), 491–507 (2017)

    Google Scholar 

  2. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456 (2004)

    Google Scholar 

  3. Brown, E.N., Frank, L.M., Tang, D., Quirk, M.C., Wilson, M.A.: A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J. Neurosci. 18(18), 7411–7425 (1998)

    Google Scholar 

  4. Huang, Y., Brandon, M.P., Griffin, A.L., Hasselmo, M.E., Eden, U.T.: Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1. Neural Comput. 21(12), 3305–3334 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Warland, D.K., Reinagel, P., Meister, M.: Decoding visual information from a population of retinal ganglion cells. J. Neurophysiol. 78(5), 2336–2350 (1997)

    Google Scholar 

  6. Field, G.D., Chichilnisky, E.J.: Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007)

    Google Scholar 

  7. Kemere, C., Shenoy, K.V., Meng, T.H.: Model-based neural decoding of reaching movements: a maximum likelihood approach. IEEE Trans. Biomed. Eng. 51(6), 925–932 (2004)

    Google Scholar 

  8. Wu, W., Gao, Y., Bienenstock, E., Donoghue, J.P., Black, M.J.: Bayesian population decoding of motor cortical activity using a Kalman filter. Neural Comput. 18(1), 80–118 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Leonardo, A., Fee, M.S.: Ensemble coding of vocal control in birdsong. J. Neurosci. 25(3), 652–661 (2005)

    Google Scholar 

  10. Rich, E.L., Wallis, J.D.: Decoding subjective decisions from orbitofrontal cortex. Nat. Neurosci. 19(7), 973 (2016)

    Google Scholar 

  11. Grewe, B.F., et al.: Neural ensemble dynamics underlying a long-term associative memory. Nature. 543(7647), 670 (2017)

    Google Scholar 

  12. Gruendemann, J., Luethi, A.: Ensemble coding in amygdala circuits for associative learning. Curr. Opin. Neurobiol. 35, 200–206 (2015)

    Google Scholar 

  13. Wu, C.-T., Haggerty, D., Kemere, C., Ji, D.: Hippocampal awake replay in fear memory retrieval. Nat. Neurosci. 20(4), 571 (2017)

    Google Scholar 

  14. Gilja, V., et al.: Clinical translation of a high-performance neural prosthesis. Nat. Med. 21(10), 1142 (2015)

    Google Scholar 

  15. Deng, X., Liu, D.F., Karlsson, M.P., Frank, L.M., Eden, U.T.: Rapid classification of hippocampal replay content for real-time applications. J. Neurophysiol. 116(5), 2221–2235 (2016)

    Google Scholar 

  16. Carr, M.F., Jadhav, S.P., Frank, L.M.: Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat. Neurosci. 14(2), 147 (2011)

    Google Scholar 

  17. Chui, C.K., Chen, G.: Kalman Filtering. Springer (2017)

    MATH  Google Scholar 

  18. Särkkä, S.: Bayesian Filtering and Smoothing, vol. 3. Cambridge University Press (2013)

    MATH  Google Scholar 

  19. Julier, S.J., Uhlmann, J.K.: New extension of the Kalman filter to nonlinear systems. In: Signal Processing, Sensor Fusion, and Target Recognition VI, vol. 3068, pp. 182–194 (1997)

    Google Scholar 

  20. Chen, Z.: Bayesian filtering: from Kalman filters to particle filters, and beyond. Statistics (Ber). 182(1), 1–69 (2003)

    Google Scholar 

  21. Eden, U.T., Frank, L.M., Barbieri, R., Solo, V., Brown, E.N.: Dynamic analysis of neural encoding by point process adaptive filtering. Neural Comput. 16(5), 971–998 (2004)

    MATH  Google Scholar 

  22. Kitagawa, G.: Non-gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82(400), 1032–1041 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Brown, E.N., Barbieri, R., Eden, U.T., Frank, L.M.: Likelihood methods for neural spike train data analysis. In: Computational Neuroscience: A Comprehensive Approach, pp. 253–286 (2003)

    Google Scholar 

  24. Smith, A.C., Brown, E.N.: Estimating a state-space model from point process observations. Neural Comput. 15(5), 965–991 (2003)

    MATH  Google Scholar 

  25. Yousefi, A., Gillespie, A.K., Guidera, J.A., Karlsson, M., Frank, L., Eden, U.: Efficient decoding of multi-dimensional signals from population spiking activity using a Gaussian mixture particle filter. IEEE Trans. Biomed. Eng. 66(12), 3486–3498 (2019)

    Google Scholar 

  26. Bansal, A.K., Truccolo, W., Vargas-Irwin, C.E., Donoghue, J.P.: Decoding 3-D reach and grasp from hybrid signals in motor and premotor cortices: spikes, multiunit activity and local field potentials. Am. J. Physiol. Circ. Physiol. 107, 1337 (2011)

    Google Scholar 

  27. Song, D., et al.: Identification of functional synaptic plasticity from spiking activities using nonlinear dynamical modeling. J. Neurosci. Methods. 244, 123–135 (2015)

    Google Scholar 

  28. Brown, E.N., Nguyen, D.P., Frank, L.M., Wilson, M.A., Solo, V.: An analysis of neural receptive field plasticity by point process adaptive filtering. Proc. Natl. Acad. Sci. 98(21), 12261–12266 (2001)

    Google Scholar 

  29. Smith, A.C., et al.: Dynamic analysis of learning in behavioral experiments. J. Neurosci. 24(2), 447–461 (2004)

    Google Scholar 

  30. Deng, X., et al.: Estimating a dynamic state to relate neural spiking activity to behavioral signals during cognitive tasks. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7808–7813 (2015)

    Google Scholar 

  31. Meng, L., Kramer, M.A., Middleton, S.J., Whittington, M.A., Eden, U.T.: A unified approach to linking experimental, statistical and computational analysis of spike train data. PLoS One. 9(1), e85269 (2014)

    Google Scholar 

  32. Meng, L., Kramer, M.A., Eden, U.T.: A sequential Monte Carlo approach to estimate biophysical neural models from spikes. J. Neural Eng. 8(6), 65006 (2011)

    Google Scholar 

  33. Paninski, L., et al.: A new look at state-space models for neural data. J. Comput. Neurosci. 29(1–2), 107–126 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Ergun, A., Barbieri, R., Eden, U.T., Wilson, M.A., Brown, E.N.: Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods. IEEE Trans. Biomed. Eng. 54(3), 419–428 (2007)

    Google Scholar 

  35. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47–60 (1996)

    Google Scholar 

  36. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  37. Beier, M.E., Kim, M.H., Saterbak, A., Leautaud, V., Bishnoi, S., Gilberto, J.M.: The effect of authentic project-based learning on attitudes and career aspirations in STEM. J. Res. Sci. Teach. 56(1), 3–23 (2019)

    Google Scholar 

  38. Tzikas, D.G., Likas, A.C., Galatsanos, N.P.: The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 25(6), 131–146 (2009)

    MATH  Google Scholar 

  39. Brockwell, A.E., Rojas, A.L., Kass, R.E.: Recursive Bayesian decoding of motor cortical signals by particle filtering. J. Neurophysiol. 91(4), 1899–1907 (2004)

    Google Scholar 

  40. Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLoS Comput. Biol. 12(4), e1004730 (2016)

    Google Scholar 

  41. Aghagolzadeh, M., Truccolo, W.: Inference and decoding of motor cortex low-dimensional dynamics via latent state-space models. IEEE Trans. Neural Syst. Rehabil. Eng. 24(2), 272–282 (2016)

    Google Scholar 

  42. Wager, T.D., Kang, J., Johnson, T.D., Nichols, T.E., Satpute, A.B., Barrett, L.F.: A Bayesian model of category-specific emotional brain responses. PLoS Comput. Biol. 11(4), e1004066 (2015)

    Google Scholar 

  43. Gao, P., Ganguli, S.: On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015)

    Google Scholar 

  44. Brandman, D.M., Cash, S.S., Hochberg, L.R.: Human intracortical recording and neural decoding for brain–computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1687–1696 (2017)

    Google Scholar 

  45. Paninski, L., Pillow, J., Lewi, J.: Statistical models for neural encoding, decoding, and optimal stimulus design. Prog. Brain Res. 165, 493–507 (2007)

    Google Scholar 

  46. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory Of Point Processes: Volume II: General Theory and Structure. Springer (2007)

    MATH  Google Scholar 

  47. Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University Press (2012)

    MATH  Google Scholar 

  48. Chatfield, C.: The Analysis of Time Series: An Introduction. Chapman and Hall/CRC (2016)

    MATH  Google Scholar 

  49. Ito, K.: Gaussian filter for nonlinear filtering problems. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No. 00CH37187), vol. 2, pp. 1218–1223 (2000)

    Google Scholar 

  50. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. In: Crisan, D., Rozovskii, B. (eds.) The Oxford handbook of nonlinear filtering, pp. 656–704. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  51. Borman, S.: The expectation maximization algorithm-a short tutorial. Submitt. Publ. 41 (2004)

    Google Scholar 

  52. Levinson, S.E., Rabiner, L.R., Sondhi, M.M.: An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition. Bell Syst. Tech. J. 62(4), 1035–1074 (1983)

    MathSciNet  MATH  Google Scholar 

  53. Grimm, H.: Bharucha-Reid, AT: Elements of the theory of markov processes and their applications. McGraw-Hill, New York 1960; XI+ 468 S., $11, 50. Biom. Z. 4(2), 139–140 (1962)

    Google Scholar 

  54. Truccolo, W., Eden, U.T., Fellows, M.R., Donoghue, J.P., Brown, E.N.: A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol. 93(2), 1074–1089 (2005)

    Google Scholar 

  55. Särkkä, S.: Unscented Rauch--Tung--Striebel smoother. IEEE Trans. Automat. Contr. 53(3), 845–849 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Kitagawa, G., Gersch, W.: Smoothness Priors Analysis of Time Series, vol. 116. Springer (1996)

    MATH  Google Scholar 

  57. Papoulis, A., Pillai, S.U.: Probability, Random Variables, and Stochastic Processes. Tata McGraw-Hill Education (2002)

    Google Scholar 

  58. Kailath, T.: Linear Systems, vol. 156. Prentice-Hall, Englewood Cliffs (1980)

    MATH  Google Scholar 

  59. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Google Scholar 

  60. Smith, A.F.M., Gelfand, A.E.: Bayesian statistics without tears: a sampling–resampling perspective. Am. Stat. 46(2), 84–88 (1992)

    MathSciNet  Google Scholar 

  61. Andersen, E.B.: Asymptotic properties of conditional maximum-likelihood estimators. J. R. Stat. Soc. Ser. B. 32(2), 283–301 (1970)

    MathSciNet  MATH  Google Scholar 

  62. Carter, C.K., Kohn, R.: On Gibbs sampling for state space models. Biometrika. 81(3), 541–553 (1994)

    MathSciNet  MATH  Google Scholar 

  63. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation (1965)

    MATH  Google Scholar 

  64. Avriel, M.: Nonlinear Programming: Analysis and Methods. Courier Corporation (2003)

    MATH  Google Scholar 

  65. McCullagh, P., Nelder, J.A.: Generalized linear models. J. R. Stat. Soc. Ser. A. 135(3), 370–384 (1989)

    MATH  Google Scholar 

  66. Swokowski, E.W.: Calculus with Analytic Geometry. Taylor & Francis (1979)

    MATH  Google Scholar 

  67. Casella, G., Berger, R.L.: Statistical Inference, vol. 2. Duxbury, Pacific Grove (2002)

    MATH  Google Scholar 

  68. Deng, X., Liu, D.F., Kay, K., Frank, L.M., Eden, U.T.: Clusterless decoding of position from multiunit activity using a marked point process filter. Neural Comput. 27(7), 1438–1460 (2015)

    MathSciNet  MATH  Google Scholar 

  69. Jacobsen, M.: Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Springer (2006)

    MATH  Google Scholar 

  70. Eden, U.T., Frank, L.M., Tao, L.: Characterizing complex, multi-scale neural phenomena using state-space models. In: Dynamic Neuroscience, pp. 29–52. Springer (2018)

    Google Scholar 

  71. Prerau, M.J., et al.: Characterizing learning by simultaneous analysis of continuous and binary measures of performance. J. Neurophysiol. 102(5), 3060–3072 (2009)

    Google Scholar 

  72. Doucet, A., De Freitas, N., Gordon, N.: An introduction to sequential Monte Carlo methods. In: Sequential Monte Carlo Methods in Practice, pp. 3–14. Springer (2001)

    MATH  Google Scholar 

  73. Ghahramani, Z., Beal, M.J.: Variational inference for Bayesian mixtures of factor analysers. In: Advances in Neural Information Processing Systems, pp. 449–455 (2000)

    Google Scholar 

  74. Ghahramani, Z., Beal, M.J.: Propagation algorithms for variational Bayesian learning. In: Advances in Neural Information Processing Systems, pp. 507–513 (2001)

    Google Scholar 

  75. Logothetis, A., Krishnamurthy, V.: Expectation maximization algorithms for MAP estimation of jump Markov linear systems. IEEE Trans. Signal Process. 47(8), 2139–2156 (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri T. Eden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yousefi, A., Eden, U.T. (2023). State Space Models for Spike Data. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_109

Download citation

Publish with us

Policies and ethics