Skip to main content

UWB Applications and Bird Eye View on High Frequency LNA Applications

  • Conference paper
  • First Online:
Proceedings of International Conference on Data Science and Applications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 288))

  • 753 Accesses

Abstract

A review on different available low noise amplifier (LNA) topologies for ultrawide band and other higher frequency band (K-band, E-band, W-band) applications is presented in this paper. The design metric of LNA is gain, noise figure (NF), linearity, bandwidth, chip area, and power dissipation with broadband wide band input impedance matching. To optimize the LNA performance tradeoff exists with different topologies. This paper gives insight to optimize the LNA design metric for different topologies and a bird eye view for very high frequency ranges. In this paper, Noise Figure (NF), band width, power dissipation, supply voltage, \(S_{21}\) and other design metric is used to compare all LNA parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Pepe, D. Zito, 22.7-dB gain-19.7-dBm ICP 1dB UWB CMOS LNA. IEEE Trans. Circuits Syst. II Exp. Briefs 56(9), 689–693 (2009)

    Google Scholar 

  2. B. Park, S. Choi, S. Hong, A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems. IEEE Microw. Wireless Compon. Lett. 20(1), 40–42 (2010)

    Article  Google Scholar 

  3. C.-F. Liao, S.-I. Liu, A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE J. Solid-State Circuits 42(2), 329–339 (2007)

    Article  Google Scholar 

  4. C.-Y. Wu, Y.-K. Lo, M.-C. Chen, A 3–10 GHz CMOS UWB low noise amplifier with ESD protection circuits. IEEE Microw. Wireless Compon. Lett. 19(11), 737–739 (2009)

    Article  Google Scholar 

  5. K.-H. Chen, J.-H. Lu, B.-J. Chen, S.-I. Liu, An ultra-wide-band 0.4–10 GHz LNA in 0.18-μm CMOS. IEEE Trans. Circuits Syst. II Exp. Briefs 54(3), 217–221 (2007)

    Google Scholar 

  6. M.T. Reiha, J.R. Long, A 1.2 V reactive-feedback 3.1–10.6 GHz low-noise amplifier in 0.13-μm CMOS. IEEE J. Solid-State Circuits 42(5), 1023–1033 (2007)

    Article  Google Scholar 

  7. A. Bevilacqua, A.M. Niknejad, An ultrawideband CMOS low noise amplifier for 3.1–10.6-GHz wireless receivers. IEEE J. Solid-State Circuits 39(12), 2259–2268 (2004)

    Article  Google Scholar 

  8. J. Borremans, P. Wambacq, D. Linten, An ESD-protected DC-to-6 GHz 9.7 mW LNA in 90 nm digital CMOS, in Proceedings of IEEE ISSCC, 11–15 Feb 2007, pp. 422–613

    Google Scholar 

  9. S. Chehrazi, A. Mirzaei, R. Bagheri, A. Abidi, A 6.5 GHz wideband CMOS low noise amplifier for multi-band use, in Proceedings of IEEE CICC, San Jose, CA, Sept 2005, pp. 801–804

    Google Scholar 

  10. S.C. Blaakmeer, E.A.M. Klumperink, D.M.W. Leenaerts, B. Nauta, Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling. IEEE J. Solid-State Circuits 43(6), 1341–1350 (2008)

    Article  Google Scholar 

  11. H. Wang, L. Zhang, Z. Yu, A wideband inductorless LNA with local feedback and noise cancelling for low-power low-voltage applications. IEEE Trans. Circuits Syst. I Reg. Pap. 57(8) (2010)

    Google Scholar 

  12. R.M. Weng, C.Y. Liu, P.C. Lin, A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Trans. Microw. Theory Techn. 58(8), 2077–2083 (2010)

    Article  Google Scholar 

  13. C.C. Chen, Y.C. Wang, 3.1–10.6 GHz ultra-wideband LNA design using dual-resonant broadband matching technique. Int. J. Electron. Commun. 67(6), 500–503 (2013)

    Google Scholar 

  14. J.Y. Lee, J.H. Ham, Y.S. Lee, T.Y. Yun, CMOS LNA for full-band ultra-wideband systems using a simple wide input matching network. IET Microw. Antennas Propag. 4(12), 2155–2159 (2010)

    Article  Google Scholar 

  15. C.F. Liao, S.I. Liu, A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers. IEEE J. Solid-State Circuits 42(2), 329–339 (2007)

    Google Scholar 

  16. J. Jihak, Y. Taeyeoul, C. Jaehoon, K. Hoontae, Wideband and low noise CMOS amplifier for UWB receivers. Microw. Opt. Technol. Lett. 49(4), 749–752 (2007)

    Article  Google Scholar 

  17. Q. Wan, Q. Wang, Z. Zheng, Design and analysis of a 3.1–10.6 GHz UWB low noise amplifier with forward body bias technique. Int. J. Electron. Commun. (AEÜ) AEUE-51264, 7 (2014)

    Google Scholar 

  18. W. Wu, O. Novak, C.T. Charles, X. Fan, A low-power 3.1–5GHz ultra-wideband low noise amplifier utilizing Miller effect, in Proceedings of IEEE International Conference on UWB, Vancouver, BC, Sept 2009, pp. 255–259

    Google Scholar 

  19. M. Parvizi, K. Allidina, M.N. El-Gamal, A sub-mW, ultra-low voltage, wideband low-noise amplifier design technique. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(6), 1111–1122 (2015)

    Google Scholar 

  20. M. Parvizi, K. Allidina, M.N. El-Gamal, Short channel output conductance enhancement through forward body biasing to realize a 0.5 V 250 μW 0.6–4.2 GHz current-reuse CMOS LNA. IEEE J. Solid-State Circuits 51(3), 574–586 (2016)

    Google Scholar 

  21. M. Khurram, S.M.R. Hasan, A 3–5 GHz current-reuse gm-boosted CG LNA for ultrawideband in 130-nm CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(3), 400–409 (2012)

    Google Scholar 

  22. R.-M. Weng, C.-Y. Liu, P.-C. Lin, A low-power full-band low-noise amplifier for ultra-wideband receivers. IEEE Trans. Microw. Theory Techn. 58(8), 2077–2083 (2010)

    Article  Google Scholar 

  23. C.-P. Liang, P.-Z. Rao, T.-J. Huang, S.-J. Chung, Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection. IEEE Trans. Microw. Theory Techn. 58(2), 277–286 (2010)

    Article  Google Scholar 

  24. J.-F. Chang, Y.-S. Lin, 0.99 mW 3–10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique. Electron. Lett. 47(11), 658–659 (2011)

    Article  Google Scholar 

  25. A. Meaamar, B.C. Chye, D.M. Anh, Y.K. Seng, A 3–8 GHz low noise CMOS amplifier. IEEE Microw. Wireless Compon. Lett. 19(4), 245–247 (2009)

    Article  Google Scholar 

  26. A.R. Kumar, B.D. Sahoo, A. Dutta, A wideband 2–5 GHz noise canceling subthreshold low noise amplifier. IEEE Trans. Circuits Syst. II Exp. Briefs 65(7) (2018)

    Google Scholar 

  27. M.-Y. Huang, R.-Y. Huang, R.-M. Weng, A 0.3 V low cost low power 24 GHz low noise amplifier with body bias technology, in Proceedings of IEEE Computer Society Annual Symposium VLSI (ISVLSI), July 2017, pp. 519–522

    Google Scholar 

  28. C. Li, O. El-Aassar, A. Kumar, M. Boenke, G.M. Rebeiz, LNA design with CMOS SOI process-l.4dB NF K/Ka band LNA, in IEEE MTT-S International Microwave Symposium Digest, June 2018, pp. 1484–1486

    Google Scholar 

  29. M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi, C. Cetintepe, R.B. Staszewski, A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS. IEEE Trans. Circuits Syst. II Exp. Briefs 65(10), 1460–1464 (2018)

    Google Scholar 

  30. S. Kong, H.-D. Lee, S. Jang, J. Park, K.-S. Kim, K.-C. Lee, A 28-GHz CMOS LNA with stability-enhanced Gm-boosting technique using transformers, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2019, pp. 7–10

    Google Scholar 

  31. A.H. Aljuhani, G.M. Rebeiz, A 12.5 mW packaged K-band CMOS SOI LNA with 1.5 dB NF, in IEEE MTT-S International Microwave Symposium Digest, June 2019, pp. 156–159

    Google Scholar 

  32. B. Cui, J.R. Long, D.L. Harame, A 1.7-dB minimum NF, 22–32 GHz low noise feedback amplifier with multistage noise matching in 22-nm SOI-CMOS, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2019, pp. 211–214

    Google Scholar 

  33. L. Gao, G.M. Rebeiz, A 24–43 GHz LNA with 3.1–3.7 dB noise figure and embedded 3-pole elliptic high-pass response for 5G applications in 22 nm FDSOI, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2019, pp. 239–242

    Google Scholar 

  34. B.-Z. Lu, Y. Wang, Y.-C. Wu, C.-C. Chiong, H. Wang, A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process. IEEE Microw. Wireless Compon. Lett. 30(7) (2020)

    Google Scholar 

  35. D. Fritsche, G. Tretter, C. Carta, F. Ellinger, Millimeter-wave lownoise amplifier design in 28-nm low-power digital CMOS. IEEE Trans. Microw. Theory Techn. 63(6), 1910–1922 (2015)

    Article  Google Scholar 

  36. H. Gao et al., A 48–61 GHz LNA in 40-nm CMOS with 3.6 dB minimum NF employing a metal slotting method, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, May 2016, pp. 154–157

    Google Scholar 

  37. W. Shin, S. Callender, S. Pellerano, C. Hull, A compact 75 GHz LNA with 20 dB gain and 4 dB noise figure in 22 nm FinFET CMOS technology, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, June 2018, pp. 284–287

    Google Scholar 

  38. A. Medra et al., An 80 GHz low-noise amplifier resilient to the TX spillover in phase-modulated continuous-wave radars. IEEE J. Solid-State Circuits 51(5), 1141–1153 (2016)

    Article  Google Scholar 

  39. O. Inac, M. Uzunkol, G.M. Rebeiz, 45-nm CMOS SOI technology characterization for millimeter-wave applications. IEEE Trans. Microw. Theory Techn. 62(6), 1301–1311 (2014)

    Article  Google Scholar 

  40. Y.-S. Lin, G.-L. Lee, C.-C. Wang, Low-power 77–81 GHz CMOS LNA with excellent matching for automotive radars. Electron. Lett. 50(3), 207–209 (2014)

    Article  Google Scholar 

  41. A. Medra, V. Giannini, D. Guermandi, P. Wambacq, A 79 GHz variable gain low-noise amplifier and power amplifier in 28 nm CMOS operating up to 125°C, in Proceedings of European Solid-State Circuits Conference, Sept 2014, pp. 183–186

    Google Scholar 

  42. Y.-S. Lin et al., A 7.2 mW 74–82 GHz CMOS low-noise amplifier with 17.3±1.5 dB gain and 7.7±0.3 dB NF for automotive radar system, in Proceedings of IEEE Radio Wireless Symposium, Jan 2016, pp. 111–114

    Google Scholar 

  43. J.-H. Tsai, C.-C. Hung, J.-H. Cheng, C.-F. Lin, R.-A. Chang, An E-band transformer-based 90-nm CMOS LNA, in Proceedings of Asia-Pacific Microwave Conference, Nov 2018, pp. 660–662

    Google Scholar 

  44. G. Feng et al., Pole-converging intrastage bandwidth extension technique for wideband amplifiers. IEEE J. Solid-State Circuits 52(3), 769–780 (2017)

    Article  Google Scholar 

  45. J.-O. Plouchart et al., A 18 mW, 3.3 dB NF, 60 GHz LNA in 32 nm SOI CMOS technology with autonomic NF calibration, in Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, May 2015, pp. 319–322

    Google Scholar 

  46. C.-L. Ko, C.-H. Li, C.-N. Kuo, M.-C. Kuo, D.-C. Chang, A 8-mW 77-GHz band CMOS LNA by using reduced simultaneous noise and impedance matching technique, in Proceedings of IEEE International Symposium on Circuits and Systems, May 2015, pp. 2988–2991

    Google Scholar 

  47. F. Meng et al., A compact 57–67 GHz bidirectional LNAPA in 65-nm CMOS technology. IEEE Microw. Wireless Compon. Lett. 26(8), 628–630 (2016)

    Article  Google Scholar 

  48. A. Tomkins, P. Garcia, S. Voinigescu, A passive W-band imaging receiver in 65-nm bulk CMOS. IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010)

    Article  Google Scholar 

  49. H.V. Le, H.T. Duong, C.M. Ta, A.T. Huynh, R.J. Evans, E. Skafidas, A 77 GHz CMOS low noise amplifier for automotive radar receiver, in Proceedings of IEEE Radio-Frequency Integration Technology, Nov 2012, pp. 174–176

    Google Scholar 

  50. G. Feng, C.C. Boon, F.Y. Meng, X. Yi, C. Li, An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications. IEEE Microw. Wireless Compon. Lett. 26(2), 134–136 (2016)

    Article  Google Scholar 

  51. D. Pepe, D. Zito, 32 dB Gain 28 nm Bulk CMOS W-Band LNA (IEEE, 2014)

    Google Scholar 

  52. C.J. Lee, H.J. Lee, J.G. Lee, T.H. Jang, C.S. Park, A W-band CMOS low power wideband low noise amplifier with 22 dB gain and 3 dB bandwidth of 20 GHz, in Proceedings of Asia-Pacific Microwave Conference, Dec 2015, pp. 1–3

    Google Scholar 

  53. L. Gao, E. Wagner, G.M. Rebeiz, Design of E- and W-band low-noise amplifiers in 22-nm CMOS FD-SOI. IEEE Trans. Microw. Theory Techn. 68(1) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Archana, Kumar, M., Shukla, A. (2022). UWB Applications and Bird Eye View on High Frequency LNA Applications. In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds) Proceedings of International Conference on Data Science and Applications . Lecture Notes in Networks and Systems, vol 288. Springer, Singapore. https://doi.org/10.1007/978-981-16-5120-5_6

Download citation

Publish with us

Policies and ethics