Skip to main content

Detecting Gamma-Rays with Moderate Resolution and Large Field of View: Particle Detector Arrays and Water Cherenkov Technique

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

The Earth is continuously bombarded by cosmic rays and gamma-rays extending over an immense range of energies. Discovered in 1912 by Victor Hess, the cosmic radiation has been studied from balloons, from space, from the ground, and from underground. The resulting fields of cosmic-ray astrophysics (focused on the charged particles), gamma-ray astrophysics, and neutrino astrophysics have diverged somewhat. But for the air showers in the GeV and TeV energy ranges, the ground-based detector techniques have considerable overlaps.

Very high-energy (VHE) gamma-ray astronomy is the observational study measuring the directions, flux, energy spectra, and time variability of the sources of these gamma-rays. These measurements constrain the theoretical models of the sources and their interactions between the sources and detection at Earth. With the low flux of gamma-rays, and the background of charged particle cosmic rays, the distinguishing characteristic of gamma-ray air shower detectors is large size and significant photon to charge particle discrimination.

Air shower telescopes for gamma-ray astronomy consist of an array of detectors capable of measuring the passage of particles through the array elements. To maximize signal at energies of a TeV or so, the array needs to be built at high altitude as the maximum number of shower particles is high in the atmosphere. These detectors have included sparse arrays of shower counters, dense arrays of scintillators or resistive plate counters (RPC), buried muon detectors in concert with surface detectors, or many-interaction-deep water Cherenkov detectors (WCD).

In general, these detectors are sensitive over a large field of view, and the whole of the sky is a typical sensitivity and perhaps two-thirds of the sky selected for clean analysis, but with only moderate resolution in energy, typically due to shower-to-shower fluctuations and the intrinsic sampling of the detector. These telescopes, though, operate continuously, despite weather, moonlight, day or night, and without needing to be pointed to a specific target for essentially a 100% duty cycle. In this chapter, we will examine the performance and characteristics of such detectors. These are contrasted with the Imaging Air Cherenkov Telescopes which also operate in this energy range, and both current and future proposed experiments are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M.G. Aartsen, M. Ackermann, J. Adams, J.A. Aguilar et al. ICETOP Collaboration, Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D 100, 082002 (2019)

    Article  ADS  Google Scholar 

  • H. Abdalla et al. (2021) arXiv:2107.01425

    Google Scholar 

  • A.U. Abeysekara et al. (HAWC), Astropart. Phys. 35, 641–650 (2012). (Preprint 1108.6034)

    Google Scholar 

  • A.U. Abeysekara et al. (HAWC), Astropart. Phys. 50–52, 26–32 (2013). (Preprint 1306.5800)

    Google Scholar 

  • A.U. Abeysekara et al. (HAWC), Astrophys. J. 841, 100 (2017). (Preprint 1703.06968)

    Google Scholar 

  • A.U. Abeysekara et al., NIM A888, 138 (2018a)

    Article  ADS  Google Scholar 

  • A.U. Abeysekara et al. (HAWC Collaboration), Phys. Rev. D 97, 102005 (2018b)

    Google Scholar 

  • A.U. Abeysekara et al. (HAWC Collaboration), Phys. Rev. Lett. 124, 021102 (2020)

    Google Scholar 

  • M. Aglietta, G. Di Sciascio et al. (EAS-TOP Collaboration), Astropart. Phys. 3, 1 (1995)

    Google Scholar 

  • F. Aharonian et al. (HEGRA Collaboration), Astroph. J. 614, 897 (2004)

    Google Scholar 

  • G. Aielli et al. (ARGO-YBJ Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 562, 92 (2006)

    Google Scholar 

  • G. Aielli et al. (ARGO-YBJ Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 608, 246 (2009)

    Google Scholar 

  • A. Albert et al., (2019). arXiv:1902.08429; M. Mostafa et al., PoS ICRC2017, 851 (2018). https://www.swgo.org/

  • D.E. Alexandreas et al., Nucl. Instrum. Methods A 311, 350 (1992)

    Article  ADS  Google Scholar 

  • M. Amenomori, X.J. Bi, D. Chen, S.W. Cui, L.K. Ding et al., Tibet ASγ Collaboration, Cosmic-ray energy spectrum around the knee obtained by the Tibet experiment and future prospects. Adv. Space Res. 47, 629 (2011)

    Google Scholar 

  • M. Amenomori et al., Tibet ASγ collaboration. ApJ 813, 98 (2015)

    Article  ADS  Google Scholar 

  • M. Amenomori et al. (Tibet ASγ Collaboration), Phys. Rev. Lett. 123, 051101 (2019); M. Amenomori et al. (Tibet ASg Collaboration), Phys. Rev. Lett. 126, 141101 (2021)

    Google Scholar 

  • T. Antoni, W.D. Apel, A.F. Badea, K. Bekk, A. Bercuci et al., KASCADE Collaboration, KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems. Astropart. Phys. 24, 1 (2005)

    Article  ADS  Google Scholar 

  • W.D. Apel, J.C. Arteaga-Velázquez, K. Bekk, M. Bertainaet et al., KASCADE-Grande Collaboration, The spectrum of high-energy cosmic rays measured with KASCADE-Grande. Astropart. Phys. 36, 183 (2012)

    Article  ADS  Google Scholar 

  • T. Asaba et al. (ALPACA Collaboration), PoS ICRC2017, 827 (2018). https://alpaca-experiment.org/

  • P. Assis et al., Astropart. Phys. 99, 34 (2018)

    Article  ADS  Google Scholar 

  • R. Atkins et al., Nucl. Instrum. Methods Phys. Res. 449 478 (2000)

    Article  ADS  Google Scholar 

  • H.A. Ayala Solares et al., Astropart.Phys. 114, 68 (2020). https://www.amon.psu.edu/

  • C. Bacci et al. (ARGO-YBJ Collaboration), Nucl. Instrum. Methods Phys. Res. Sect. A 443, 342 (2000)

    Google Scholar 

  • C. Bacci et al., Astropart. Phys. 17, 151 (2002)

    Article  ADS  Google Scholar 

  • B. Bartoli, P. Bernardini, X.J. Bi, C. Bleve, I. Bolognino et al., ARGO-YBJ Collaboration, Observation of the cosmic ray moon shadowing effect with the ARGO-YBJ experiment. Phys. Rev. D84, 022003 (2011)

    ADS  Google Scholar 

  • B. Bartoli et al. (ARGO-YBJ Collaboration), Astropart. Phys. 67, 47 (2015a)

    Google Scholar 

  • B. Bartoli et al. (ARGO-YBJ), Astrophys. J. 798, 119 (2015b). (Preprint 1502.05665)

    Google Scholar 

  • Y. Becherini et al., PoS ICRC2017, 782 (2018)

    Google Scholar 

  • A. Borione et al., Nucl. Instrum. Methods A 346, 329 (1994)

    Article  ADS  Google Scholar 

  • A. Borione et al. (CASA-MIA Collaboration), Phys. Rev. D 55, 1714 (1997)

    Google Scholar 

  • Z. Cao, LHAASO Collaboration, Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources. Nature 594, 33–36 (2021)

    Google Scholar 

  • J.W. Cronin, Nuovo Cimento 19C, 847 (1996)

    Article  ADS  Google Scholar 

  • B. D’Ettorre Piazzoli, G. Di Sciascio, Astropart. Phys. 2, 199 (1994): erratum 327

    ADS  Google Scholar 

  • G. Di Sciascio, Int. J. Mod. Phys. D23, 1430019 (2014); [Erratum: Int. J. Mod. Phys. D24(02), 1592001 (2014)]

    Google Scholar 

  • G. Di Sciascio (LHAASO), Nucl. Part. Phys. Proc. 279–281, 166–173 (2016). (Preprint 1602.07600)

    Google Scholar 

  • G. Di Sciascio, J. Phys. Conf. Ser. 1263, 012003 (2019)

    Article  Google Scholar 

  • G. Di Sciascio et al. (STACEX Collaboration), (2019) arXiv:1907.06686

    Google Scholar 

  • G. Di Sciascio, B. D’Ettorre Piazzoli, M. Iacovacci, Astropart. Phys. 6, 313 (1997)

    Article  ADS  Google Scholar 

  • G. Di Sciascio et al., Proceedings of the 28th International Cosmic Ray Conference (ICRC 03), Tsukuba, Japan vol. 5 (Universal Academy Press, Inc., Tokyo, 2003), p. 3015

    Google Scholar 

  • G. Di Sciascio et al. (ARGO-YBJ Collaboration), in International Cosmic Ray Conference (ICRC 05), Pune, India, ed. by B.S. Acharya, S. Gupta, S. Tonwar, vol. 6 (Tata Institute of Fundamental Research, Mumbai, 2005), p. 33

    Google Scholar 

  • G. Di Sciascio, S. Miozzi, P. Montini, G. Piano, R. Santonico, M. Tavani, PoS ICRC2017, 781 (2018)

    Google Scholar 

  • R. Engel, D. Heck, T. Pierog. Annu. Rev. Nucl. Part. Sci. 61, 467 (2011)

    Article  ADS  Google Scholar 

  • M.A.K. Glasmacher, M.A. Catanese, M.C. Chantell et al., CASA-MIA Collaboration, The cosmic ray composition between 1014 and 1016 eV. Astropart. Phys. 12, 1 (1999)

    Article  ADS  Google Scholar 

  • K. Greisen, Progr. Cosmic Rays 3, 1 (1956)

    Google Scholar 

  • W. Heitler, The Quantum Theory of Radiation (Clarendon Press/Oxford, London, 1944)

    MATH  Google Scholar 

  • J.R. Horandel, Astrop. Phys. 19, 193 (2003)

    Article  ADS  Google Scholar 

  • A. Karle et al., Astropart. Phys. 3, 321 (1995)

    Article  ADS  Google Scholar 

  • A. Krys et al., J. Phys. G: Nucl. Part. Phys. 17, 1261 (1991)

    Article  ADS  Google Scholar 

  • S. Kunwar et al., Eur. Phys. J. C in submission (2021)

    Google Scholar 

  • J. Matthews, Astropart. Phys. 22, 387 (2005)

    Article  ADS  Google Scholar 

  • R. Maze, A. Zawadzki, Nuovo Cimento 17, 625 (1960)

    Article  Google Scholar 

  • NOAO, NASA, and USAF, US Standard Atmosphere 1976, US Government Printing Office (1976)

    Google Scholar 

  • V.V. Prosin, S.F. Berezhnev, N.M. Budnev et al., TUNKA Collaboration, Results from Tunka-133 (5 years observation) and from the Tunka-HiSCORE prototype. EPJ Web Conf. 121, 03004 (2016)

    Article  Google Scholar 

  • R.J. Protheroe, R.W. Clay, Proc. ASA 5, 586 (1984)

    ADS  Google Scholar 

  • H. Schoorlemmer et al., Eur. Phys. J. C 79, 427 (2019)

    Article  ADS  Google Scholar 

  • G. Sinnis, WSPC Handb. Astron. Instrum. 7, 137 (2021)

    Article  Google Scholar 

  • S. Westerhoff (HAWC Collaboration), Adv. Space Res. 53, 1492 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. DuVernois .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

DuVernois, M.A., Sciascio, G.D. (2023). Detecting Gamma-Rays with Moderate Resolution and Large Field of View: Particle Detector Arrays and Water Cherenkov Technique. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_64-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_64-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics