Skip to main content

CubeSats for Gamma-Ray Astronomy

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

After many years of flying in space primarily for educational purposes, CubeSats – tiny satellites with form factors corresponding to arrangements of “1U” units, or cubes, each 10 cm on a side – have come into their own as valuable platforms for technology advancement and scientific investigations. CubeSats offer comparatively rapid, low-cost access to space for payloads that can be built, tested, and operated by relatively small teams, with substantial contributions from students and early career researchers. Continuing advances in compact, low-power detectors, readout electronics, and flight computers have now enabled X-ray and gamma-ray sensing payloads that can fit within the constraints of CubeSat missions, permitting in-orbit demonstrations of new techniques and innovative high-energy astronomy observations. Gamma-ray-sensing CubeSats are certain to make an important contribution in the new era of multi-messenger, time-domain astronomy by detecting and localizing bright transients such as gamma-ray bursts, solar flares, and terrestrial gamma-ray flashes; however, other astrophysical science areas requiring long observations in a low-background environment, including gamma-ray polarimetry, studies of nuclear lines, and measurement of diffuse backgrounds, will likely benefit as well. We present the primary benefits of CubeSats for high-energy astronomy, highlight the scientific areas currently or soon to be studied, and review the missions that are currently operating, under development, or proposed. A rich portfolio of CubeSats for gamma-ray astronomy already exists, and the potential for a broad range of creative and scientifically productive missions in the near future is very high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • B. Abbott et al., Gravitational waves and gamma–rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys. J. 848, L13 (2017)

    Article  ADS  Google Scholar 

  • M. Ajello et al., The evolution of swift/BAT blazars and the origin of the MeV background. Astrophys. J. 699, 603 (2009)

    Article  ADS  Google Scholar 

  • A. Almazrouei et al., A complete mission concept design and analysis of the student-led cubesat project: light-1. Aerospace 8, 247 (2021)

    Article  Google Scholar 

  • F. Arneodo, A. di Giovanni A, P. Marpu, A review of requirements for gamma radiation detection in space using CubeSats. Appl. Sci. 11, 2659 (2021)

    Google Scholar 

  • J.-L. Atteia et al., 3U Transat: a swarm of CubeSats to survey the high-energy transient sky. SPIE Montreal (2022)

    Google Scholar 

  • J. Beechert et al., Calibrations of the compton spectrometer and imager. Nucl. Inst. Methods Phys. Res. A 1031, 166510, pp. 15, (2022)

    Google Scholar 

  • E. Berger, Short-duration gamma-ray bursts. Ann. Rev. Astron. Astrophys. 52, 43–105 (2019)

    Article  ADS  Google Scholar 

  • E. Bissaldi et al., Photodetectors for gamma–ray astronomy, in Handbook of X-Ray and Gamma–Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google Scholar 

  • P. Bloser et al., Scintillators with silicon photomultiplier readouts for high-energy astrophysics and heliophysics, in Proceedings of the SPIE, vol. 9144 (2014)

    Google Scholar 

  • P. Bloser et al., Balloon flight test of a Compton telescope based on scintillators with silicon photomultiplier readouts. Nucl. Inst. Methods Phys. Res. A 812, 92–103 (2016)

    Article  ADS  Google Scholar 

  • P. Bloser, W.T. Vestrand et al., The mini astrophysical MeV background observatory (MAMBO) cubeSat mission. Proc. SPIE 11821, 118210I (2021). https://doi.org/10.1117/12.2594046

    Google Scholar 

  • P. Bloser, W.T. Vestrand et al., The mini astrophysical MeV background observatory (MAMBO) cubeSat mission for gamma–ray astronomy. Proc. SPIE. 12181, 121812L (2022). https://doi.org/10.1117/12.2629069

    Google Scholar 

  • J. Braga et al., LECX: a CubeSat experiment to detect and localize cosmic explosions in hard x-rays. MNRAS 493, 4852–4860 (2020)

    Article  ADS  Google Scholar 

  • C. Burkhard, S. Weston, The Evolution of CubeSat Spacecraft Platforms. AVT-336 Specialist’ Meeting (2021)

    Google Scholar 

  • C. Cappelletti, S. Battistini, B. Malphrus (ed.), CubeSat Handbook: From Mission Design to Operations, London, (Academic, 2021)

    Google Scholar 

  • C. Castillo-Sancho et al., Lessons learned from AIV in ESA’s fly your satellite! Educational CubeSat programme, in 35th Annual Small Satellite Conference (2021)

    Google Scholar 

  • H. Chang et al., The Gamma-ray Transients Monitor (GTM) on board Formosat-8B and its GRB detection efficiency. Adv. Space Res. 69, 1249 (2022)

    Article  ADS  Google Scholar 

  • C. Chen et al., Design and test of a portable gamma-ray burst simulator for GECAM. Exp. Astron. 52, 45–58 (2021)

    Article  ADS  Google Scholar 

  • T. Cline et al., Energy spectra of cosmic gamma–ray bursts. Astrophys. J. 185, L1 (1973)

    Article  ADS  Google Scholar 

  • A. de Angelis et al., Gamma-ray astrophysics in the MeV range. Exp. Astron. 51, 1225–1254 (2021)

    Article  ADS  Google Scholar 

  • J. DeLange et al., Sensor for small satellite relative PNT in deep-space. IEEE/ION Position, Location and Navigation Symposium (PLANS) (2016). https://doi.org/10.1109/PLANS.2016.7479794

    Book  Google Scholar 

  • B. Dennis et al., Ramaty high energy solar spectroscopic imager (RHESSI), in Handbook of X-Ray and Gamma–Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google Scholar 

  • R. Diehl, Gamma-ray observations of cosmic nuclei, in The 16th International Symposium on Nuclei in the Cosmos (NIC-XVI), ed. by W. Liu, Y. Wang, B. Guo, X. Tang, S. Zeng, EPJ Web of Conferences, Chengdu, vol. 260 (2022). id.10001. https://doi.org/10.1051/epjconf/202226010001

  • A. Di Giovanni et al., Characterisation of a CeBr3(LB) detector for space application. J. Instrum. 14, P09017, pp. 15, (2019)

    Google Scholar 

  • E. Dotto et al., LICIACube – the light Italian cubesat for imaging of asteroids in support of the NASA DART mission towards asteroid (65803) didymos. Planet. Space Sci. 105185, pp. 12, 199, (2021)

    Google Scholar 

  • M. Doyle et al., Update on the status of the Educational Irish Research Satellite (EIRSAT-1), in 4th Symposium on Space Educational Activities (Universitat Politécnica de Catalunya, 2022a)

    Google Scholar 

  • M. Doyle et al., Design, development, and testing of flight software for EIRSAT-1: a university-class CubeSat enabling astronomical research, in SPIE Astronomical Telescopes and Instrumentation, Montréal (2022b)

    Google Scholar 

  • M. Doyle et al., Mission test campaign for the EIRSAT-1 engineering qualification model. Aerospace, pp. 28, 9, 100 (2022c)

    Google Scholar 

  • R. Dunwoody et al., Thermal vacuum test campaign of the EIRSAT-1 engineering qualification model. Aerospace, pp. 30, 9, 99 (2022a)

    Google Scholar 

  • R. Dunwoody et al., Validation of the operations manual for EIRSAT-1, a 2U CubeSat with a novel gamma–ray burst detector, in SPIE Astronomical Telescopes and Instrumentation, Montréal (2022b)

    Google Scholar 

  • Y. Evangelista et al., The Scientific Payload on-Board the HERMES-TP and HERMES-SP CubeSat Missions; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020)

    Google Scholar 

  • S. Fabiani et al., CUSP: a two CubeSats constellation for Space Weather and solar flares X-ray polarimetry. SPIE Montreal (2022)

    Google Scholar 

  • A. Falcone et al., A soft X-ray sky monitor, transient finder, and burst detector for high-energy and multimessenger astrophysics. Bull. Am. Astron. Soc. 54(3), (2022). https://baas.aas.org/pub/2022n3i108p38

  • H. Feng, P. Kaaret, The HaloSat and PolarLight CubeSat Missions for X-ray Astrophysics, in Handbook of X-Ray and Gamma–Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022). https://arxiv.org/abs/2201.03155

    Google Scholar 

  • F. Fiore et al., The HERMES-Technologic and Scientific Pathfinder; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020)

    Google Scholar 

  • G.J. Fishman et al., Discovery of intense gamma–ray flashes of atmospheric origin. Science 264, 1313–1316 (1994)

    Article  ADS  Google Scholar 

  • R. Gill et al., Linear polarization in gamma-ray burst prompt emission. MNRAS 491, 3343 (2020)

    ADS  Google Scholar 

  • G. Giuffrida et al., CloudScout: a deep neural network for on-board cloud detection on hyperspectral images. Remote Sens. 12, 2205 (2020)

    Article  ADS  Google Scholar 

  • J. Greiner et al., GRIPS – gamma-ray imaging, polarimetry and spectroscopy. Exp. Astron. 34, 551–582 (2012)

    Article  ADS  Google Scholar 

  • A. Harding, Multi-wavelength polarimetry of isolated pulsars, in Astronomical Polarisation from the Infrared to Gamma Rays. Astrophysics and Space Science Library, vol. 460, ed. by R. Mignani, A. Shearer, A. Słowikowska, S. Zane (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-19715-5_11

  • Z. Hughes, M. Errando, T. Olbemo, W. Ho, A compact gamma–ray spectrometer for nuclear astrophysics and planetary science. Proc. SPIE 12181, 1218176 (2021)

    Google Scholar 

  • A. Iyudin et al., Scintillation detectors in gamma–ray astronomy, in Handbook of X-Ray and Gamma–Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022)

    Google Scholar 

  • C. Kierans, AMEGO: exploring the extreme multi-messenger universe, in Proceedings of the SPIE, vol. 11444 (2020)

    Google Scholar 

  • A. Kinnaird et al., Selection of lessons learned from phase C/D of CubeSat projects of the Fly Your Satellite! programme, in 4th Symposium on Space Educational Activities, Barcelona (2022)

    Google Scholar 

  • R. Klebesadel et al., Observations of gamma–ray bursts of cosmic origin. Astrophys. J. 182, L85 (1973)

    Article  ADS  Google Scholar 

  • E. Kulu, Small Launchers – 2021 Industry Survey and Market Analysis, in 72nd International Astronautical Congress (IAC 2021), Dubai (2021)

    Google Scholar 

  • P. Kumar, B. Zhang, The physics of gamma–ray bursts and relativistic jets. Phys. Rep. 561, 1–109 (2015)

    Article  ADS  Google Scholar 

  • P. Laurent et al., Polarized gamma-ray emission from the galactic black hole cygnus X-1. Science 332, 438 (2011)

    Article  ADS  Google Scholar 

  • P. Laurent et al., XGRE: a TGF/GRB detector on the TARANIS spacecraft. Mem. Della Soc. Astron. Italiana 90, 259 (2019)

    ADS  Google Scholar 

  • P. Laurent et al., COMPOL: a gamma–ray polarimeter in a nanosat. Presented at Monitoring the High Energy Sky with Small Satellites, Brno (2022). https://www.grbnanosats.net/mediawiki/images/c/ca/Presentation_COMPOL_Laurent.pdf

    Google Scholar 

  • A. Laviron et al., COMCUBE: a constellation of CubeSats to measure the GRB prompt emission polarization, in Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, ed. by A. Siebert, K. Baillié, E. Lagadec, N. Lagarde, J. Malzac, J.-B. Marquette, M. N’Diaye, J. Richard, O. Venot (2021), pp. 105–108

    Google Scholar 

  • F. Lebrun et al., The Gamma Cube: a novel concept of gamma-ray telescope, in Proceedings of the SPIE, vol. 9144 (2014)

    Google Scholar 

  • F. Lei et al., Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309 (1997)

    Article  ADS  Google Scholar 

  • G. Lucchetta et al., Introducing the MeVCube concept: a CubeSat for MeV observations. J. Cosmol. Astropart. Phys. (2022). https://arxiv.org/abs/2204.01325. Accepted for publication

  • J. Mangan et al., Performance analysis of embedded firmware for the detection of gamma–ray bursts on a 2U CubeSat, in SPIE Astronomical Telescopes and Instrumentation, Montréal (2022)

    Google Scholar 

  • J. Mason et al., Miniature x-ray solar spectrometer: a science-oriented, university 3U cubeSat. J. Spacecr. Rockets 53, 328–339 (2016)

    Article  ADS  Google Scholar 

  • J. Mason et al., MinXSS-2 cubeSat mission overview: improvements from the successful MinXSS-1 mission. Adv. Space Res. 66, 3–9 (2020)

    Article  ADS  Google Scholar 

  • C. Meegan et al., The fermi gamma-ray burst monitor. Astrophys. J. 702, 791–804 (2009)

    Article  ADS  Google Scholar 

  • D. Meier et al., SIPHRA 16-Channel Silicon Photomultiplier Readout ASIC Proceedings AMICSA&DSP 2016, Gothenburg, 12–16 June 2016 (2016)

    Google Scholar 

  • R. Millan et al., Small satellites for space science: a COSPAR scientific roadmap. Adv. Space Res. 64, 1466–1517 (2019)

    Article  ADS  Google Scholar 

  • R. Miller, D. Lawrence, First light: MeV Astrophysics from the moon. Astrophys. J. 823, L31 (2016)

    Article  ADS  Google Scholar 

  • L. Mitchell et al., Strontium iodide radiation instrumentation II (SIRI-2), in Proceedings of the SPIE, vol. 11118 (2019)

    Google Scholar 

  • L. Mitchell et al., GAGG Radiation Instrumentation (GARI), in Proceedings of the SPIE, vol. 11821 (2021)

    Google Scholar 

  • K. Murase, I. Bartos, High-energy multimessenger transient astrophysics. Ann. Rev. Nucl. Part. Sci. 69, 477–506 (2019)

    Article  ADS  Google Scholar 

  • D. Murphy et al., A compact instrument for gamma–ray burst detection on a CubeSat platform I: design drivers and expected performance. Exp. Astron. 52, 59–84 (2021a)

    Article  ADS  Google Scholar 

  • D. Murphy et al., Balloon flight test of a CeBr3 detector with silicon photomultiplier readout. Exp. Astron. 52, 1–34 (2021b)

    Article  ADS  Google Scholar 

  • D. Murphy et al., A compact instrument for gamma–ray burst detection on a CubeSat platform II: detailed design, assembly and validation. Exp. Astron. 53, 961–990 (2022)

    Article  ADS  Google Scholar 

  • T. Norbert et al., The ASIM mission on the international space station. Space Sci. Rev. 215, 26 (2019)

    Article  Google Scholar 

  • A. Pál et al., GRBAlpha: a 1U CubeSat mission for validating timing-based gamma–ray burst localization, in Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray. International Society for Optics and Photonics (SPIE, 2020), vol. 11444, ed. by J.W.A. den Herder, S. Nikzad, K. Nakazawa (2020), pp. 825–833. https://doi.org/10.1117/12.2561351

  • J.S. Perkins et al., BurstCube: a CubeSat for gravitational wave counterparts. Proc. SPIE 2020, 277 (2020)

    Google Scholar 

  • H. Phan, H. Halloin, P. Laurent, IGOSat – A 3U Cubesat for measuring the radiative electrons content in low Earth orbit and ionosphere. Nucl. Instrum. Methods Phys. Res. Sect. A 912, 389 (2018)

    Article  ADS  Google Scholar 

  • M. Pinilla-Orjuela, P. Bloser et al., A lunar CubeSat mission for high- sensitivity nuclear astrophysics. Proc. SPIE 11444, 1144456 (2020)

    Google Scholar 

  • T. Piran, The physics of gamma–ray bursts. Rev. Mod. Phys. 76, 1143–1210 (2004)

    Article  ADS  Google Scholar 

  • S. Poolakkil et al., The fermi-GBM gamma-ray burst spectral catalog: 10 yr of data. Astrophys. J. 913, 60, pp. 20, (2021)

    Google Scholar 

  • R. Rahin et al., GALI: a gamma–ray burst localizing instrument. Proc. SPIE 11444, 114446E (2020)

    Google Scholar 

  • J. Reilly et al., EIRFLAT-1: a FlatSat platform for the development and testing of the 2U CubeSat EIRSAT-1, in 4th Symposium on Space Educational Activities (Universitat Politécnica de Catalunya, 2022)

    Google Scholar 

  • J. Ripa et al., GRB 211019A: detection by GRBAlpha. GCN 30946 (2021). https://ui.adsabs.harvard.edu/abs/2021GCN.30946....1R/abstract

  • J. Ripa et al., Early results from GRBAlpha and VZLUSAT-2, in Proceedings of SPIE, Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, vol. 12181 (2022). https://ui.adsabs.harvard.edu/link_gateway/2022arXiv220703272R/arxiv:2207.03272

  • P. Ruiz-Lapuente et al., The origin of the cosmic gamma–ray background in the MeV range. Astrophys. J. 820, 142 (2016)

    Article  ADS  Google Scholar 

  • A. Sanna et al., Timing Techniques Applied to Distributed Modular High-Energy Astronomy: The H.E.R.M.E.S. Project; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Washington, DC (2020), pp. 11444–11251. Online only

    Google Scholar 

  • D. Schloms et al., A flexible CubeSat education platform combining software development and hardware engineering, in 4th Symposium on Space Educational Activities (SSEA), Barcelona (2022)

    Google Scholar 

  • V. Schónfelder et al., Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma–ray observatory. Astrophys. J. Suppl. 86, 657 (2020)

    Article  ADS  Google Scholar 

  • W. Setterberg et al., Geant4 modeling of a cerium bromide scintillator detector for the IMPRESS cubeSat mission. Proc. SPIE 12181, pp. 13, (2022)

    Google Scholar 

  • T. Sharma et al., Results from the Advanced Scintillator Compton Telescope (ASCOT) balloon payload, in Proceedings of the SPIE, vol. 11444 (2020)

    Google Scholar 

  • D. Sherwin et al., Wave-based attitude control of EIRSAT-1, 2U CubeSat, in 2nd Symposium on Space Educational Activities, Budapest (2018)

    Google Scholar 

  • T. Siegert et al., Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astron. Astrophys. 586, A84 (2016)

    Article  Google Scholar 

  • V. Tatischeff et al., The e-ASTROGAM gamma–ray space mission, in Proceedings of the SPIE, vol. 9905 (2016)

    Google Scholar 

  • V. Tatischeff et al., The COMCUBE CubeSat mission for gamma–ray burst polarimetry. SPIE Montreal (2022a)

    Google Scholar 

  • V. Tatischeff, P. Ubertini, T. Mizuno, L. Natalucci, Orbits and background of gamma-ray space instruments, in Handbook of X-Ray and Gamma–Ray Astrophysics, ed. by C. Bambi, A. Santangelo (Springer, Singapore, 2022b). https://arxiv.org/pdf/2209.07316.pdf

    Google Scholar 

  • J. Thompson et al., Thermal characterization testing of a robust and reliable thermal knife HDRM (Hold Down and Release Mechanism) for CubeSat deployables, in 4th Symposium on Space Educational Activities (Universitat Politécnica de Catalunya, 2022)

    Google Scholar 

  • K. Toma et al., Statistical properties of gamma-ray burst polarization. Astrophys. J. 698, 1042 (2009)

    Article  ADS  Google Scholar 

  • J. Trombka et al., Reanalysis of the Apollo cosmic gamma–ray spectrum in the 0.3–10 MeV energy region. Astrophys. J. 212, 925 (1977)

    Google Scholar 

  • A. Ulyanov et al., Using the SIPHRA ASIC with an SiPM array and scintillators for gamma spectroscopy, in IEEE Nuclear Science Symposium and Medical Imaging Conference (2017a)

    Google Scholar 

  • A. Ulyanov et al., Localisation of gamma-ray interaction points in thick monolithic CeBr3 and LaBr3:Ce scintillators. Nucl. Inst. Methods Phys. Res. A 844, 81–89 (2017b)

    Article  ADS  Google Scholar 

  • A. Ulyanov et al., Radiation damage study of SensL J-series silicon photomultipliers using 101.4 MeV protons. Nucl. Inst. Methods Phys. Res. A 976, 164203 (2020). Article id. 164203

    Google Scholar 

  • A. Ulyanov et al., GIFTS: gamma–ray investigation of the full transient sky. Presented at Monitoring the High Energy Sky with Small Satellites, Brno (2022). https://www.grbnanosats.net/mediawiki/images/b/b5/Brno_gifts.pdf

    Google Scholar 

  • W.T. Vestrand, P. Bloser et al., The mini astrophysical MeV background observatory (MAMBO), in 36th International Cosmic Ray Conference (ICRC2019), vol. 608 (2019)

    Google Scholar 

  • P. von Ballmoos et al., A DUAL mission for nuclear astrophysics. Exp. Astron. 34, 583–622 (2012)

    Article  ADS  Google Scholar 

  • S. Walsh et al., Development of the EIRSAT-1 CubeSat through functional verification of the engineering qualification model. Aerospace 8, 254, pp. 19, (2021)

    Google Scholar 

  • X.I. Wang, GRB 210121A: a typical fireball burst detected by two small missions. Astrophys. J. 922, 237 (2021)

    Article  ADS  Google Scholar 

  • K. Watanabe et al., The MeV cosmic gamma–ray background measured with SMM. AIP Conf. Proc. 510, 471 (2000)

    Article  ADS  Google Scholar 

  • G. Weidenspointner et al., The cosmic diffuse gamma–ray background measured with COMPTEL. AIP Conf. Proc. 510, 581 (2000)

    Article  ADS  Google Scholar 

  • G. Weidenspointner et al., The COMPTEL instrumental line background. Astron. Astrophys. 368, 347–368 (2001)

    Article  ADS  Google Scholar 

  • G. Weidenspointner et al., First identification and modelling of SPI background lines. Astron. Astrophys. 411, L113–L116 (2003)

    Article  ADS  Google Scholar 

  • J. Wen et al., GRID: a student project to monitor the transient gamma–ray sky in the multi-messenger astronomy era. Exp. Astron. 48, 77–95 (2019)

    Article  ADS  Google Scholar 

  • C.-Y. Yang et al., Feasibility of observing gamma–ray polarization from cygnus X-1 using a cubeSat. Astron. J. 160, 54 (2020)

    Article  ADS  Google Scholar 

  • V. Zharkova et al., Recent advances in understanding particle acceleration processes in solar flares. Space Sci. Rev. 159, 357 (2011)

    Article  ADS  Google Scholar 

  • X. Zheng, In-orbit radiation damage characterization of SiPMs in GRID-02 CubeSat detector (2022). Available via arXiv https://arxiv.org/abs/2205.10506

Download references

Acknowledgements

PB acknowledges support from the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20210047DR. DM acknowledges support from Science Foundation Ireland grant 19/FFP/6777.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Bloser or David Murphy .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bloser, P., Murphy, D., Fiore, F., Perkins, J. (2023). CubeSats for Gamma-Ray Astronomy. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_53-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_53-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics