Skip to main content

Silicon Detectors for Gamma-Ray Astronomy

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

Silicon semiconductor detectors have heralded a worldwide revolution in gamma-ray astrophysics. Because of their ease of fabrication, abundance, and functionality at room temperature, silicon detectors have become the to-go detector for large-scale use in gamma-ray telescopes. This chapter will discuss the principles of silicon detectors, including the interaction of photons in silicon, their operating principles, and various detector technologies. Finally the chapter will overview a sample of past and currently operating space-based gamma-ray missions which have implemented various silicon detector technologies and briefly discuss the future outlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M. Ajello, W.B. Atwood, M. Axelsson, R. Bagagli, M. Bagni, L. Baldini et al., Fermi large area telescope performance after 10 years of operation. ApJ. Suppl. Ser. 256, 12 (2021). [2106.12203]

    Google Scholar 

  • A. Argan et al., The data handling system for the AGILE satellite, in IEEE Symposium Conference Record Nuclear Science, vol. 1 (2004), pp. 371–375

    Google Scholar 

  • I. D. E. AS, https://www.ideas.no, 2022. Accessed 31 Jan 2022

  • W.B. Atwood, R. Bagagli, L. Baldini, R. Bellazzini, G. Barbiellini, F. Belli et al., Design and initial tests of the Tracker-converter of the Gamma-ray Large Area Space Telescope. Astropart. Phys. 28, 422–434 (2007)

    Article  ADS  Google Scholar 

  • L. Baldini, A. Brez, T. Himel, M. Hirayama, R.P. Johnson, W. Kroeger et al., The silicon tracker readout electronics of the gamma-ray large area space telescope. IEEE Trans. Nucl. Sci. 53, 466–473 (2006a)

    Article  ADS  Google Scholar 

  • L. Baldini, A. Brez, T. Himel, R.P. Johnson, L. Latronico, M. Minuti et al., Fabrication of the GLAST silicon tracker readout electronics. IEEE Trans. Nucl. Sci. 53, 3013–3020 (2006b)

    Article  ADS  Google Scholar 

  • G. Barbiellini et al., The AGILE scientific instrument, in AIP Conference Proceedings 587, 729, Melville (AIP, 2001), pp. 774–778

    Google Scholar 

  • G. Barbiellini et al., The AGILE silicon tracker: testbeam results of the prototype silicon detector. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 490, 146–158 (2002)

    Article  ADS  Google Scholar 

  • M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar et al., XCOM: Photon Cross Section Database (version 1.5), National Institute of Standards and Technology. http://physics.nist.gov/xcom. Accessed: (2010)25 Jan 2022

  • I. Brewer, M. Negro, N. Striebig, C. Kierans, R. Caputo, R. Leys et al., Developing the future of gamma-ray astrophysics with monolithic silicon pixels. Nucl. Instrum. Methods A 1019, 165795 (2021). [2109.13409]

    Google Scholar 

  • P. Cattaneo et al., Characterization of a tagged γ-ray beam line at the DAΦNE beam test facility. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 674, 55–66 (2012)

    Article  ADS  Google Scholar 

  • E. Celesti et al., AGILE, a satellite for high energy γ-ray astrophysics: prospects for the Mini-Calorimeter. New Astron. Rev. 48, 315–320 (2004)

    Article  ADS  Google Scholar 

  • M. Feroci et al., SuperAGILE: the hard X-ray imager for the AGILE space mission. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 581, 728–754 (2007)

    Article  ADS  Google Scholar 

  • S. Hasan et al., A Photon Tag Calibration Beam for the AGILE Satellite (World Scientific, 2007), pp. 217–222. https://doi.org/10.1142/9789812773678_0036

  • K. Hayashi, I. Park, K. Dotsu, I. Ueno, S. Nishino, M. Matsuoka et al., Radiation effects on the silicon semiconductor detectors for the ASTRO-H mission. Nucl. Instrum. Methods Phys. Res. A 699, 225–229 (2013)

    Article  ADS  Google Scholar 

  • Hitomi Collaboration, F. Aharonian, H. Akamatsu, F. Akimoto, S.W. Allen, L. Angelini et al., Detection of polarized gamma-ray emission from the Crab nebula with the Hitomi Soft Gamma-ray Detector. PASJ 70, 113 (2018). [1810.00704]

    Google Scholar 

  • JabberWok, Compton-scattering.svg. https://commons.wikimedia.org/w/index.php?curid=20780 04. Accessed:25 Jan 2022 (2006)

  • M. Kaneko et al., Improvement of radiation hardness of double-sided silicon strip detector for Belle SVD upgrade. IEEE Trans. Nucl. Sci. 49, 1593–1597 (2002)

    Article  ADS  Google Scholar 

  • M. Kokubun, K. Makishima, T. Takahashi, T. Murakami, M. Tashiro, Y. Fukazawa et al., In-orbit performance of the hard X-ray detector on board Suzaku. PASJ 59, 53–76 (2007). [astro-ph/0611233]

    Google Scholar 

  • S.C. Lee, H.B. Jeon, K.H. Kang, H. Park, Study of silicon PIN diode responses to low energy gamma-rays. J. Korean Phys. Soc. 69, 1587–1590 (2016)

    Article  ADS  Google Scholar 

  • W.R. Leo, Techniques for Nuclear and Particle Physics Experiments A How-to Approach (Springer, Berlin/London, 1994)

    Book  Google Scholar 

  • L. Maximon, Simple analytic expressions for the total born approximation cross section for pair production in a coulomb field. J. Res. Natl. Bur. Stand. Sect. B: Math. Sci. 72B, 79–88 (1968)

    Article  Google Scholar 

  • M. Moll, Displacement damage in silicon detectors for high energy physics. IEEE Trans. Nucl. Sci. 65, 1561–1582 (2018)

    Article  ADS  Google Scholar 

  • K. Nakazawa, G. Sato, M. Kokubun, T. Enoto, Y. Fukazawa, K. Hagino et al., Hard x-ray imager onboard Hitomi (ASTRO-H). J. Astron. Telescopes Instrum. Syst. 4, 021410 (2018)

    ADS  Google Scholar 

  • S. Nishino, Y. Fukazawa, T. Mizuno, H. Takahashi, K. Hayashi, K. Hiragi et al., On-orbit calibration status of the hard x-ray detector (HXD) onboard Suzaku, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, ed. by M. Arnaud, S.S. Murray, T. Takahashi. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7732 (2010), p. 77322J. https://doi.org/10.1117/12.856888

  • T. Ohsugi et al., Design and properties of the GLAST flight silicon micro-strip sensors. Nucl. Inst. Methods A 541, 29–39 (2005)

    Article  ADS  Google Scholar 

  • Particle Data Group collaboration, P. Zyla et al., Rev. Part. Phys. PTEP 2020, 083C01 (2020)

    Google Scholar 

  • I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology. Nucl. Instrum. Methods A 582, 876–885 (2007)

    Article  ADS  Google Scholar 

  • I. Perić et al., A high-voltage pixel sensor for the ATLAS upgrade. Nucl. Instrum. Methods Phys. Res. A 924, 99–103 (2019)

    Article  ADS  Google Scholar 

  • I. Peric et al., High-voltage CMOS active pixel sensor. IEEE J. Solid State Circuits 56, 2488–2502 (2021)

    Article  ADS  Google Scholar 

  • C. Pontoni et al., The thermal and vibrational tests of the AGILE silicon tracker, in IEEE Symposium Conference Record Nuclear Science, vol. 1 (2004), pp. 386–389

    Google Scholar 

  • M. Prest et al., The AGILE silicon tracker: an innovative γ-ray instrument for space. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 501, 280–287 (2003)

    Article  ADS  Google Scholar 

  • V. Radeka, Low-noise techniques in detectors. Annu. Rev. Nucl. Part. Sci. 38, 217 (1988)

    Article  ADS  Google Scholar 

  • H. Sadrozinski, Applications of silicon detectors. Nucl. Sci. IEEE Trans. 48, 933–940 (2001)

    Article  ADS  Google Scholar 

  • A. Schöning et al., MuPix and ATLASPix – Architectures and Results. PoS Vertex2019, 024 (2020). [2002.07253]

    Google Scholar 

  • S. Seidel, Silicon strip and pixel detectors for particle physics experiments. Phys. Rep. 828, 1–34 (2019)

    Article  ADS  Google Scholar 

  • C. Sgro, W. Atwood, L. Baldini, G. Barbiellini, R. Bellazzini, F. Belli et al., Construction, test and calibration of the glast silicon tracker. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 583, 9–13 (2007)

    Article  ADS  Google Scholar 

  • P. Soffitta et al., Instrumental and astrophysical performances of SuperAGILE on-board AGILE Gamma-Ray mission, in Proceedings Volume 4140, X-Ray and Gamma-Ray Instrumentation for Astronomy XI, Bellingham (SPIE, 2000), pp. 283–292

    Google Scholar 

  • H. Tajima, S. Watanabe, Y. Fukazawa, R. Blandford, T. Enoto, A. Goldwurm et al., Design and performance of Soft Gamma-ray Detector onboard the Hitomi (ASTRO-H) satellite. J. Astron. Telescopes Instrum. Syst. 4, 021411 (2018)

    ADS  Google Scholar 

  • T. Takahashi, K. Abe, M. Endo, Y. Endo, Y. Ezoe, Y. Fukazawa et al., Hard X-ray detector (HXD) on board Suzaku. PASJ 59, 35–51 (2007). [astro-ph/0611232]

    Google Scholar 

  • T. Takahashi, M. Kokubun, K. Mitsuda, R.L. Kelley, T. Ohashi, F. Aharonian et al., Hitomi (ASTRO-H) X-ray astronomy satellite. J. Astron. Telescopes Instrum. Syst. 4, 021402 (2018)

    ADS  Google Scholar 

  • D. Turecek, L. Pinsky, J. Jakubek, Z. Vykydal, N. Stoffle, S. Pospisil, Small dosimeter based on timepix device for international space station. J. Instrum. 6, C12037–C12037 (2011)

    Article  Google Scholar 

  • S. Watanabe, H. Tajima, Y. Fukazawa, Y. Ichinohe, S. Takeda, T. Enoto et al., The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD). Nucl. Instrum. Methods Phys. Res. A 765, 192–201 (2014). [1509.00588]

    Google Scholar 

  • J. Wyss et al., SIRAD: an irradiation facility at the LNL tandem accelerator for radiation damage studies on semiconductor detectors and electronic devices and systems. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 462, 426–434 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Caputo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Caputo, R. et al. (2022). Silicon Detectors for Gamma-Ray Astronomy. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_160-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_160-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics