Skip to main content

Fundamental Physics with Neutron Stars

  • Living reference work entry
  • First Online:
Handbook of X-ray and Gamma-ray Astrophysics

Abstract

Neutron stars are rich laboratories of multiple branches of modern physics. These include gravitational physics, nuclear and particle physics, (quantum) electrodynamics, and plasma astrophysics. In this chapter, we present the pioneering theoretical studies and the pivotal historical observations on which our understanding of neutron stars is based on. Then, we discuss the usage of neutron stars as probes of fundamental theories of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • B.P. Abbott et al. in LIGO Scientific Collaboration and Virgo Collaboration, GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101, 1710.05832

  • M. Ackermann et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339(6121), 807–811 (2013). https://doi.org/10.1126/science.1231160, 1302.3307

  • M. AlGendy, S.M. Morsink, Universality of the acceleration due to gravity on the surface of a rapidly rotating neutron star. ApJ 791(2), 78 (2014). https://doi.org/10.1088/0004-637X/791/2/78, 1404.0609

  • P.W. Anderson, N. Itoh, Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256(5512), 25–27 (1975). https://doi.org/10.1038/256025a0

    Article  ADS  Google Scholar 

  • E. Annala, T. Gorda, A. Kurkela, J. Nättilä, A. Vuorinen, Evidence for quark-matter cores in massive neutron stars. Nat. Phys. 16(9), 907–910 (2020). https://doi.org/10.1038/s41567-020-0914-9, 1903.09121

  • E. Annala, T. Gorda, E. Katerini, A. Kurkela, J. Nättilä, V. Paschalidis, A. Vuorinen, Multimessenger constraints for ultradense matter. Phys. Rev. X 12(1), 011058 (2022). https://doi.org/10.1103/PhysRevX.12.011058, 2105.05132

  • J. Antoniadis, P.C.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe, J.W.T. Hessels, V.M. Kaspi, V.I. Kondratiev, N. Langer, T.R. Marsh, M.A. McLaughlin, T.T. Pennucci, S.M. Ransom, I.H. Stairs, J. van Leeuwen, J.P.W. Verbiest, D.G. Whelan, A massive pulsar in a compact relativistic binary. Science 340(6131), 448 (2013). https://doi.org/10.1126/science.1233232, 1304.6875

  • R.F. Archibald, V.M. Kaspi, C.Y. Ng, K.N. Gourgouliatos, D. Tsang, P. Scholz, A.P. Beardmore, N. Gehrels, J.A. Kennea, An anti-glitch in a magnetar. Nature 497(7451), 591–593 (2013). https://doi.org/10.1038/nature12159, 1305.6894

  • J. Arons, Some problems of pulsar physics or I’m madly in love with electricity. Space Sci. Rev. 24(4), 437–510 (1979). https://doi.org/10.1007/BF00172212

    Article  ADS  Google Scholar 

  • J. Arons, Pulsars: progress, problems and prospects (2007). arXiv e-prints arXiv:0708.1050, 0708.1050

    Google Scholar 

  • B. Arzoumanian et al. in NANOGrav Collaboration, The NANOGrav 11-year Data Set: high-precision timing of 45 millisecond pulsars. ApJS 235(2), 37 (2018). https://doi.org/10.3847/1538-4365/aab5b0, 1801.01837

  • W. Baade, F. Zwicky, Cosmic rays from super-novae. Proc. Natl. Acad. Sci. 20, 259–263 (1934). https://doi.org/10.1073/pnas.20.5.259

    Article  ADS  Google Scholar 

  • M. Bachetti, F.A. Harrison, D.J. Walton, B.W. Grefenstette, D. Chakrabarty, Fürst F, D. Barret, A. Beloborodov, S.E. Boggs, F.E. Christensen, W.W. Craig, A.C. Fabian, C.J. Hailey, A. Hornschemeier, V. Kaspi, S.R. Kulkarni, T. Maccarone, J.M. Miller, V. Rana, D. Stern, S.P. Tendulkar, J. Tomsick, N.A. Webb, W.W. Zhang, An ultraluminous X-ray source powered by an accreting neutron star. Nature 514(7521), 202–204 (2014). https://doi.org/10.1038/nature13791, 1410.3590

  • L. Baiotti, Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. Prog. Part. Nucl. Phys. 109, 103714 (2019). https://doi.org/10.1016/j.ppnp.2019.103714, 1907.08534

  • M.M. Basko, R.A. Sunyaev, The limiting luminosity of accreting neutron stars with magnetic fields. MNRAS 175, 395–417 (1976). https://doi.org/10.1093/mnras/175.2.395

    Article  ADS  Google Scholar 

  • G. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978)

    Google Scholar 

  • M. Bauböck, E. Berti, D. Psaltis, F. Özel, Relations between neutron-star parameters in the Hartle-Thorne approximation. ApJ 777(1), 68 (2013). https://doi.org/10.1088/0004-637X/777/1/68, 1306.0569

  • G. Baym, C. Pethick, D. Pines, Superfluidity in neutron stars. Nature 224(5220), 673–674 (1969). https://doi.org/10.1038/224673a0

    Article  ADS  Google Scholar 

  • G. Beaudet, V. Petrosian, E.E. Salpeter, Energy losses due to neutrino processes. ApJ 150, 979 (1967). https://doi.org/10.1086/149398

    Article  ADS  Google Scholar 

  • A.M. Beloborodov, Gravitational bending of light near compact objects. ApJ 566, L85–L88 (2002). https://doi.org/10.1086/339511

    Article  ADS  Google Scholar 

  • A.M. Beloborodov, Emission of magnetar bursts and precursors of neutron star mergers. ApJ 921(1), 92 (2021). https://doi.org/10.3847/1538-4357/ac17e7, 2011.07310

  • V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii, Quantum electrodynamics (2nd revised edn.) (1982). https://doi.org/10.1016/C2009-0-24486-2

  • V.S. Beskin, Radio pulsars: already fifty years! Phys. Usp. 61(4), 353–380 (2018). https://doi.org/10.3367/UFNe.2017.10.038216, 1807.08528

  • S. Bogdanov, F.K. Lamb, S. Mahmoodifar, M.C. Miller, S.M. Morsink, T.E. Riley, T.E. Strohmayer, A.K. Tung, A.L. Watts, A.J. Dittmann, D. Chakrabarty, S. Guillot, Z. Arzoumanian, K.C. Gendreau,Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. II. Emission from hot spots on a rapidly rotating neutron star. ApJ 887(1), L26 (2019). https://doi.org/10.3847/2041-8213/ab5968, 1912.05707

  • T.M. Braje, R.W. Romani, K.P. Rauch, Light curves of rapidly rotating neutron stars. ApJ 531, 447–452 (2000). https://doi.org/10.1086/308448

    Article  ADS  Google Scholar 

  • A. Bransgrove, A.M. Beloborodov, Y. Levin, A quake quenching the vela pulsar. ApJ 897(2), 173 (2020). https://doi.org/10.3847/1538-4357/ab93b7, 2001.08658

  • C. Cadeau, S.M. Morsink, D. Leahy, S.S. Campbell, Light curves for rapidly rotating neutron stars. ApJ 654, 458–469 (2007). https://doi.org/10.1086/509103, astro-ph/0609325

  • M. Caleb, I. Heywood, K. Rajwade, M. Malenta, B. Willem Stappers, E. Barr, W. Chen, V. Morello, S. Sanidas, J. van den Eijnden, M. Kramer, D. Buckley, J. Brink, S.E. Motta, P. Woudt, P. Weltevrede, F. Jankowski, M. Surnis, S. Buchner, M.C. Bezuidenhout, L.N. Driessen, R. Fender, Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 6, 828–836 (2022). https://doi.org/10.1038/s41550-022-01688-x, 2206.01346

  • B. Cerutti, A.M. Beloborodov, Electrodynamics of pulsar magnetospheres. Space Sci. Rev. 207(1–4), 111–136 (2017). https://doi.org/10.1007/s11214-016-0315-7, 1611.04331

  • B. Cerutti, A. Philippov, K. Parfrey, A. Spitkovsky, Particle acceleration in axisymmetric pulsar current sheets. MNRAS 448(1), 606–619 (2015). https://doi.org/10.1093/mnras/stv042, 1410.3757

  • B. Cerutti, A.A. Philippov, A. Spitkovsky, Modelling high-energy pulsar light curves from first principles. MNRAS 457(3), 2401–2414 (2016). https://doi.org/10.1093/mnras/stw124, 1511.01785

  • J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932a). https://doi.org/10.1038/129312a0

    Article  ADS  Google Scholar 

  • J. Chadwick, The existence of a neutron. Proc. R. Soc. Lond. Ser. A 136, 692–708 (1932b). https://doi.org/10.1098/rspa.1932.0112

    Article  ADS  Google Scholar 

  • A.Y. Chen, A.M. Beloborodov, Electrodynamics of axisymmetric pulsar magnetosphere with electron-positron discharge: a numerical experiment. ApJ 795(1), L22 (2014). https://doi.org/10.1088/2041-8205/795/1/L22, 1406.7834

  • I. Contopoulos, D. Kazanas, C. Fendt, The axisymmetric pulsar magnetosphere. ApJ 511(1), 351–358 (1999). https://doi.org/10.1086/306652, astro-ph/9903049

  • J.M. Cordes, S. Chatterjee, Fast radio bursts: an extragalactic enigma. ARA&A 57, 417–465 (2019). https://doi.org/10.1146/annurev-astro-091918-104501, 1906.05878

  • R. Cornelisse, J. Heise, E. Kuulkers, F. Verbunt, J.J.M. in’t Zand, The longest thermonuclear X-ray burst ever observed? A BeppoSAX wide field camera observation of 4U 1735-44. A&A 357, L21–L24 (2000). astro-ph/0003454

    Google Scholar 

  • A. Cumming, L. Bildsten, Carbon flashes in the heavy-element ocean on accreting neutron stars. ApJ 559(2), L127–L130 (2001). https://doi.org/10.1086/323937, astro-ph/0107213

  • R.H. Cyburt, A.M. Amthor, A. Heger, E. Johnson, L. Keek, Z. Meisel, H. Schatz, K. Smith, Dependence of x-ray burst models on nuclear reaction rates. ApJ 830(2), 55 (2016). https://doi.org/10.3847/0004-637X/830/2/55, 1607.03416

  • E. Damen, E. Magnier, W.H.G. Lewin, J. Tan, W. Penninx, J. van Paradijs, X-ray bursts with photospheric radius expansion and the gravitational redshift of neutron stars. A&A 237, 103 (1990)

    ADS  Google Scholar 

  • N. Degenaar, V.F. Suleimanov, Testing the equation of state with electromagnetic observations, in The Physics and Astro-physics of Neutron Stars, Astrophysics and Space Science Library, vol. 457, ed. by L. Rezzolla, P. Pizzochero, D.I. Jones, N. Rea, I. Vidaña (2018), p. 185. https://doi.org/10.1007/978-3-319-97616-7_5

  • N. Degenaar, D.R. Ballantyne, T. Belloni, M. Chakraborty, Y.P. Chen, L. Ji, P. Kretschmar, E. Kuulkers, J. Li, T.J. Maccarone, J. Malzac, S. Zhang, S.N. Zhang, Accretion disks and coronae in the x-ray flashlight. Space Sci. Rev. 214(1), 15 (2018). https://doi.org/10.1007/s11214-017-0448-3, 1711.06272

  • P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319), 1081–1083 (2010). https://doi.org/10.1038/nature09466, 1010.5788

  • F. Douchin, P. Haensel, A unified equation of state of dense matter and neutron star structure. A&A 380, 151–167 (2001). https://doi.org/10.1051/0004-6361:20011402, astro-ph/0111092

  • R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars: implications for gamma-ray bursts. ApJ 392, L9 (1992). https://doi.org/10.1086/186413

    Article  ADS  Google Scholar 

  • C.M. Espinoza, A.G. Lyne, B.W. Stappers, M. Kramer, A study of 315 glitches in the rotation of 102 pulsars. MNRAS 414(2), 1679–1704 (2011). https://doi.org/10.1111/j.1365-2966.2011.18503.x, 1102.1743

  • R. Fernández, B.D. Metzger, Electromagnetic signatures of neutron star mergers in the advanced LIGO Era. Ann. Rev. Nucl. Part. Sci. 66(1), 23–45 (2016). https://doi.org/10.1146/annurev-nucl-102115-044819, 1512.05435

  • E. Fonseca, T.T. Pennucci, J.A. Ellis, I.H. Stairs, D.J. Nice, S.M. Ransom, P.B. Demorest, Z. Arzoumanian, K. Crowter, T. Dolch, R.D. Ferdman, M.E. Gonzalez, G. Jones, M.L. Jones, M.T. Lam, L. Levin, M.A. McLaughlin, K. Stovall, J.K. Swiggum, W. Zhu, The NANOGrav nine-year data set: mass and geometric measurements of binary millisecond pulsars. ApJ 832(2), 167 (2016). https://doi.org/10.3847/0004-637X/832/2/167, 1603.00545

  • E. Fonseca, H.T. Cromartie, T.T. Pennucci, P.S. Ray, A.Y. Kirichenko, S.M. Ransom, P.B. Demorest, I.H. Stairs, Z. Arzoumanian, L. Guillemot, A. Parthasarathy, M. Kerr, I. Cognard, P.T. Baker, H. Blumer, P.R. Brook, M. DeCesar, T. Dolch, F.A. Dong, E.C. Ferrara, W. Fiore, N. Garver-Daniels, D.C. Good, R. Jennings, M.L. Jones, V.M. Kaspi, M.T. Lam, D.R. Lorimer, J. Luo, A. McEwen, J.W. McKee, M.A. McLaughlin, N. McMann, B.W. Meyers, A. Naidu, C. Ng, D.J. Nice, N. Pol, H.A. Radovan, B. Shapiro-Albert, C.M. Tan, S.P. Tendulkar, J.K. Swiggum, H.M. Wahl, W.W. Zhu, Refined mass and geometric measurements of the high-mass PSR J0740+6620. ApJ 915(1), L12 (2021). https://doi.org/10.3847/2041-8213/ac03b8, 2104.00880

  • D.K. Galloway, L. Keek, Thermonuclear X-ray Bursts, in Timing Neutron Stars: Pulsations, Oscillations and Explosions, Astrophysics and Space Science Library, vol. 461, ed. by T.M. Belloni, M. Méndez, C. Zhang (2021), pp. 209–262. https://doi.org/10.1007/978-3-662-62110-3_5, 1712.06227

  • A. Giuliani, M. Cardillo, M. Tavani, Y. Fukui, S. Yoshiike, K. Torii, G. Dubner, G. Castelletti, G. Barbiellini, A. Bulgarelli, P. Caraveo, E. Costa, P.W. Cattaneo, A. Chen, T. Contessi, E. Del Monte, I. Donnarumma, Y. Evangelista, M. Feroci, F. Gianotti, F. Lazzarotto, F. Lucarelli, F. Longo, M. Marisaldi, S. Mereghetti, L. Pacciani, A. Pellizzoni, G. Piano, P. Picozza, C. Pittori, G. Pucella, M. Rapisarda, A. Rappoldi, S. Sabatini, P. Soffitta, E. Striani, M. Trifoglio, A. Trois, S. Vercellone, F. Verrecchia, V. Vittorini, S. Colafrancesco, P. Giommi, G. Bignami, Neutral pion emission from accelerated protons in the supernova remnant W44. ApJ 742(2), L30 (2011). https://doi.org/10.1088/2041-8205/742/2/L30, 1111.4868

  • T. Gold, Rotating neutron stars as the origin of the pulsating radio sources. Nature 218(5143), 731–732 (1968). https://doi.org/10.1038/218731a0

    Article  ADS  Google Scholar 

  • P. Goldreich, W.H. Julian, Pulsar electrodynamics. ApJ 157, 869 (1969). https://doi.org/10.1086/150119

    Article  ADS  Google Scholar 

  • D.A. Green, A revised catalogue of 294 Galactic supernova remnants. J. Astrophys. Astron. 40(4), 36 (2019). https://doi.org/10.1007/s12036-019-9601-6, 1907.02638

  • A. Gruzinov, Power of an axisymmetric pulsar. Phys. Rev. Lett. 94(2), 021101 (2005). https://doi.org/10.1103/PhysRevLett.94.021101, astro-ph/0407279

  • S. Guichandut, A. Cumming, M. Falanga, Z. Li, M. Zamfir, Expanded atmospheres and winds in type I x-ray bursts from accreting neutron stars. ApJ 914(1), 49 (2021). https://doi.org/10.3847/1538-4357/abfa13, 2103.08476

  • S. Guillot, M. Servillat, N.A. Webb, R.E. Rutledge, Measurement of the radius of neutron stars with high signal-to-noise quiescent low-mass x-ray binaries in globular clusters. ApJ 772(1), 7 (2013). https://doi.org/10.1088/0004-637X/772/1/7, 1302.0023

  • P. Haensel, J.L. Zdunik, Models of crustal heating in accreting neutron stars. A&A 480(2), 459–464 (2008). https://doi.org/10.1051/0004-6361:20078578, 0708.3996

  • P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure. Astrophysics and Space Science Library, vol. 326 (Springer, New York, 2007)

    Google Scholar 

  • J.B. Hartle, K.S. Thorne, Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. ApJ 153, 807 (1968). https://doi.org/10.1086/149707

    Google Scholar 

  • B. Haskell, A. Melatos, Models of pulsar glitches. Int. J. Mod. Phys. D 24(3), 1530008 (2015). https://doi.org/10.1142/S0218271815300086, 1502.07062

  • J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, A radio pulsar spinning at 716 Hz. Science 311(5769), 1901–1904 (2006). https://doi.org/10.1126/science.1123430, astro-ph/0601337

  • A. Hewish, S.J. Bell, J.D.H. Pilkington, P.F. Scott, R.A. Collins, Observation of a rapidly pulsating radio source. Nature 217(5130), 709–713 (1968). https://doi.org/10.1038/217709a0

    Article  ADS  Google Scholar 

  • J.S. Heyl, N.J. Shaviv, D. Lloyd, The high-energy polarization-limiting radius of neutron star magnetospheres – I. Slowly rotating neutron stars. MNRAS 342(1), 134–144 (2003). https://doi.org/10.1046/j.1365-8711.2003.06521.x, astro-ph/0302118

  • K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, T. Suda, K. Takahashi, T. Tanimori, K. Miyano, M. Yamada, E.W. Beier, L.R. Feldscher, S.B. Kim, A.K. Mann, F.M. Newcomer, R. van, W. Zhang, B.G. Cortez, Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58(14), 1490–1493 (1987). https://doi.org/10.1103/PhysRevLett.58.1490

  • W.C.G. Ho, C.O. Heinke, A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant. Nature 462(7269), 71–73 (2009). https://doi.org/10.1038/nature08525, 0911.0672

  • C.J. Horowitz, K. Kadau, Breaking strain of neutron star crust and gravitational waves. Phys. Rev. Lett. 102(19), 191102 (2009). https://doi.org/10.1103/PhysRevLett.102.191102, 0904.1986

  • C.J. Horowitz, D.K. Berry, E.F. Brown, Phase separation in the crust of accreting neutron stars. Phys. Rev. E 75(6), 066101 (2007). https://doi.org/10.1103/PhysRevE.75.066101, astro-ph/0703062

  • J.J.M. in’t Zand, N.N. Weinberg, Evidence of heavy-element ashes in thermonuclear x-ray bursts with photospheric superexpansion. A&A 520, A81 (2010). https://doi.org/10.1051/0004-6361/200913952, 1001.0900

  • J.J.M. in’t Zand, L. Keek, Y. Cavecchi, Relativistic outflow from two thermonuclear shell flashes on neutron stars. A&A 568, A69 (2014). https://doi.org/10.1051/0004-6361/201424044, 1407.0300

  • J.M. Jauch, F. Rohrlich, The Theory of Photons and Electrons. The Relativistic Quantum Field Theory of Charged Particles with Spin One-Half (Springer Nature, 1976). https://doi.org/10.1007/978-3-642-80951-4

  • J.J.E. Kajava, J. Nättilä, O.M. Latvala, M. Pursiainen, J. Poutanen, V.F. Suleimanov, M.G. Revnivtsev, E. Kuulkers, D.K. Galloway, The influence of accretion geometry on the spectral evolution during thermonuclear (type I) X-ray bursts. MNRAS 445(4), 4218–4234 (2014). https://doi.org/10.1093/mnras/stu2073, 1406.0322

  • J.J.E. Kajava, K.I.I. Koljonen, J. Nättilä, V. Suleimanov, J. Poutanen, Variable spreading layer in 4U 1608-52 during thermonuclear X-ray bursts in the soft state. MNRAS 472(1), 78–89 (2017a). https://doi.org/10.1093/mnras/stx1963, 1707.09479

  • J.J.E. Kajava, J. Nättilä, J. Poutanen, A. Cumming, V. Suleimanov, E. Kuulkers, Detection of burning ashes from thermonuclear X-ray bursts. MNRAS 464(1), L6–L10 (2017b). https://doi.org/10.1093/mnrasl/slw167, 1608.06801

  • J.J.E. Kajava, C. Sánchez-Fernández, E. Kuulkers, J. Poutanen, X-ray burst-induced spectral variability in 4U 1728-34. A&A 599, A89 (2017c). https://doi.org/10.1051/0004-6361/201629542, 1611.03976

  • V.M. Kaspi, A.M. Beloborodov, Magnetars. ARA&A 55(1), 261–301 (2017). https://doi.org/10.1146/annurev-astro-081915-023329, 1703.00068

  • V.M. Kaspi, M.S.E. Roberts, A.K. Harding, Isolated neutron stars: from the Surface to the Interior. in Compact stellar X-ray sources, vol. 39, ed. by Z. Silvia, T. Roberto, P. Dany, Cambridge University Press, Cambridge, (2006), pp. 279–339

    Google Scholar 

  • D. Klochkov, V. Suleimanov, G. Pühlhofer, D.G. Yakovlev, A. Santangelo, K. Werner, The neutron star in HESS J1731-347: central compact objects as laboratories to study the equation of state of superdense matter. A&A 573, A53 (2015). https://doi.org/10.1051/0004-6361/201424683, 1410.1055

  • E. Kuulkers, P.R. den Hartog, J.J.M. in’t Zand, F.W.M. Verbunt, W.E. Harris, M. Cocchi, Photospheric radius expansion x-ray bursts as standard candles. A&A 399, 663–680 (2003). https://doi.org/10.1051/0004-6361:20021781, astro-ph/0212028

  • L.D. Landau, On the theory of stars. Phys. Z. Sowjetunion 1, 285–288 (1932)

    MATH  Google Scholar 

  • J.M. Lattimer, Neutron star mass and radius measurements. Universe 5(7), 159 (2019). https://doi.org/10.3390/universe5070159

  • R. Lau, M. Beard, S.S. Gupta, H. Schatz, A.V. Afanasjev, E.F. Brown, A. Deibel, L.R. Gasques, G.W. Hitt, W.R. Hix, L. Keek, P. Möller, P.S. Shternin, A.W. Steiner, M. Wiescher, Y. Xu, Nuclear reactions in the crusts of accreting neutron stars. ApJ 859(1), 62 (2018). https://doi.org/10.3847/1538-4357/aabfe0, 1803.03818

  • Lhaaso Collaboration, Z. Cao et al., Peta-electron volt gamma-ray emission from the crab nebula. Science 373, 425–430 (2021). https://doi.org/10.1126/science.abg5137, 2111.06545

  • X. Li, J. Zrake, A.M. Beloborodov, Dissipation of Alfvén waves in relativistic magnetospheres of magnetars. ApJ 881(1), 13 (2019). https://doi.org/10.3847/1538-4357/ab2a03, 1810.10493

  • K.H. Lo, M.C. Miller, S. Bhattacharyya, F.K. Lamb, Determining neutron star masses and radii using energy-resolved waveforms of x-ray burst oscillations. ApJ 776, 19 (2013). https://doi.org/10.1088/0004-637X/776/1/19, 1304.2330

  • V. Loktev, T. Salmi, J. Nättilä, J. Poutanen, Oblate Schwarzschild approximation for polarized radiation from rapidly rotating neutron stars. A&A 643, A84 (2020). https://doi.org/10.1051/0004-6361/202039134, 2009.08852

  • Y. Lyubarsky, Fast radio bursts from reconnection in a magnetar magnetosphere. ApJ 897(1), 1 (2020). https://doi.org/10.3847/1538-4357/ab97b5, 2001.02007

  • Y. Lyubarsky, Emission mechanisms of fast radio bursts. Universe 7(3), 56 (2021). https://doi.org/10.3390/universe7030056, 2103.00470

  • Y. Lyubarsky, J.G. Kirk, Reconnection in a striped pulsar wind. ApJ 547(1), 437–448 (2001). https://doi.org/10.1086/318354, astro-ph/0009270

  • J.F. Mahlmann, A.A. Philippov, A. Levinson, A. Spitkovsky, H. Hakobyan, Electromagnetic fireworks: fast radio bursts from rapid reconnection in the compressed magnetar wind. ApJ 932(2), L20 (2022). https://doi.org/10.3847/2041-8213/ac7156, 2203.04320

  • R.N. Manchester, G.B. Hobbs, A. Teoh, M. Hobbs, VizieR Online Data Catalog: ATNF Pulsar Catalog (Manchester+, 2005) (VizieR Online Data Catalog VII/245, 2005)

    Google Scholar 

  • J.C. McKinney, Relativistic force-free electrodynamic simulations of neutron star magnetospheres. MNRAS 368(1), L30–L34 (2006). https://doi.org/10.1111/j.1745-3933.2006.00150.x, astro-ph/0601411

  • F.C. Michel, Relativistic stellar-wind torques. ApJ 158, 727 (1969). https://doi.org/10.1086/150233

    Article  ADS  Google Scholar 

  • F.C. Michel, Rotating magnetospheres: an exact 3-D solution. ApJ 180, L133 (1973). https://doi.org/10.1086/181169

    Article  ADS  Google Scholar 

  • M.C. Miller, F.K. Lamb, Observational constraints on neutron star masses and radii. Eur. Phys. J. A 52, 63 (2016). https://doi.org/10.1140/epja/i2016-16063-8, 1604.03894

  • M.C. Miller, F.K. Lamb, A.J. Dittmann, S. Bogdanov, Z. Arzoumanian, K.C. Gendreau, S. Guillot, A.K. Harding, W.C.G. Ho, J.M. Lattimer, R.M. Ludlam, S. Mahmoodifar, S.M. Morsink, P.S. Ray, T.E. Strohmayer, K.S. Wood, T. Enoto, R. Foster, T. Okajima, G. Prigozhin, Y. Soong, PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. ApJ 887(1), L24 (2019). https://doi.org/10.3847/2041-8213/ab50c5, 1912.05705

  • M.C. Miller, F.K. Lamb, A.J. Dittmann, S. Bogdanov, Z. Arzoumanian, K.C. Gendreau, S. Guillot, W.C.G. Ho, J.M. Lattimer, M. Loewenstein, S.M. Morsink, P.S. Ray, M.T. Wolff, C.L. Baker, T. Cazeau, S. Manthripragada, C.B. Markwardt, T. Okajima, S. Pollard, I. Cognard, H.T. Cromartie, E. Fonseca, L. Guillemot, M. Kerr, A. Parthasarathy, T.T. Pennucci, S. Ransom, I. Stairs, The radius of PSR J0740+6620 from NICER and XMM-Newton data. ApJ 918(2), L28 (2021). https://doi.org/10.3847/2041-8213/ac089b, 2105.06979

  • C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973)

    Google Scholar 

  • S.M. Morsink, D.A. Leahy, C. Cadeau, J. Braga, The oblate schwarzschild approximation for light curves of rapidly rotating neutron stars. ApJ 663, 1244–1251 (2007). https://doi.org/10.1086/518648, arXiv:astro-ph/0703123

  • A. Mushtukov, S. Tsygankov, Accreting strongly magnetised neutron stars: x-ray pulsars (2022). arXiv e-prints arXiv:2204.14185, 2204.14185

    Google Scholar 

  • A.A. Mushtukov, S.S. Tsygankov, V.F. Suleimanov, J. Poutanen, Ultraluminous x-ray sources as neutrino pulsars. MNRAS 476(3), 2867–2873 (2018). https://doi.org/10.1093/mnras/sty379, 1801.04810

  • A.G. Muslimov, A.I. Tsygan, General relativistic electric potential drops above pulsar polar caps. MNRAS 255, 61–70 (1992). https://doi.org/10.1093/mnras/255.1.61

    Article  ADS  MathSciNet  Google Scholar 

  • J. Nättilä, A.M. Beloborodov, Radiative turbulent flares in magnetically dominated plasmas. ApJ 921(1), 87 (2021). https://doi.org/10.3847/1538-4357/ac1c76, 2012.03043

  • J. Nättilä, A.M. Beloborodov, Heating of magnetically dominated plasma by Alfvén-wave turbulence. Phys. Rev. Lett. 128(7), 075101 (2022). https://doi.org/10.1103/PhysRevLett.128.075101, 2111.15578

  • J. Nättilä, P. Pihajoki, Radiation from rapidly rotating oblate neutron stars. A&A 615, A50 (2018). https://doi.org/10.1051/0004-6361/201630261, 1709.07292

  • J. Nättilä, A.W. Steiner, J.J.E. Kajava, V.F. Suleimanov, J. Poutanen, Equation of state constraints for the cold dense matter inside neutron stars using the cooling tail method. A&A 591, A25 (2016). https://doi.org/10.1051/0004-6361/201527416, http://adsabs.harvard.edu/abs/2016A%26A...591A..25N, 1509.06561

  • J. Nättilä, M.C. Miller, A.W. Steiner, J.J.E. Kajava, V.F. Suleimanov, J. Poutanen, Neutron star mass and radius measurements from atmospheric model fits to x-ray burst cooling tail spectra. A&A 608, A31 (2017). https://doi.org/10.1051/0004-6361/201731082, http://adsabs.harvard.edu/abs/2017A%26A...608A..31N, 1709.09120

  • F. Özel, Soft equations of state for neutron-star matter ruled out by EXO 0748 - 676. Nature 441(7097), 1115–1117 (2006). https://doi.org/10.1038/nature04858, astro-ph/0605106

  • F. Özel, P. Freire, Masses, radii, and the equation of state of neutron stars. ARA&A 54, 401–440 (2016). https://doi.org/10.1146/annurev-astro-081915-023322, 1603.02698

  • B. Paczynski, M. Proszynski, Models of radiation-driven winds from general relativistic neutron stars. ApJ 302, 519 (1986). https://doi.org/10.1086/164012

    Article  ADS  Google Scholar 

  • D. Page, J. Homan, M. Nava-Callejas, Y. Cavecchi, M.V. Beznogov, N. Degenaar, R. Wijnands, A.S. Parikh, A “Hyperburst” in the MAXI J0556-332 neutron star: evidence for a new type of thermonuclear explosion (2022). arXiv e-prints arXiv:2202.03962, 2202.03962

    Google Scholar 

  • A. Papitto, D. de Martino, Transitional millisecond pulsars, in Millisecond Pulsars, Astrophysics and Space Science Library, vol. 465, ed. by S. Bhattacharyya, A. Papitto, D. Bhattacharya (2022), pp. 157–200. https://doi.org/10.1007/978-3-030-85198-9_6, 2010.09060

  • G. Pappas, T.A. Apostolatos, Revising the multipole moments of numerical spacetimes and its consequences. Phys. Rev. Lett. 108(23), 231104 (2012). https://doi.org/10.1103/PhysRevLett.108.231104, 1201.6067

  • V. Paschalidis, N. Stergioulas, Rotating stars in relativity. Living Rev. Relativ. 20(1), 7 (2017). https://doi.org/10.1007/s41114-017-0008-x, 1612.03050

  • K.R. Pechenick, C. Ftaclas, J.M. Cohen, Hot spots on neutron stars – the near-field gravitational lens. ApJ 274, 846–857 (1983). https://doi.org/10.1086/161498

    Article  ADS  Google Scholar 

  • E. Petroff, J.W.T. Hessels, D.R. Lorimer, Fast radio bursts. A&A Rev. 27(1), 4 (2019). https://doi.org/10.1007/s00159-019-0116-6, 1904.07947

  • E. Petroff, J.W.T. Hessels, D.R. Lorimer, Fast radio bursts at the dawn of the 2020s. A&A Rev. 30(1), 2 (2022). https://doi.org/10.1007/s00159-022-00139-w, 2107.10113

  • A. Philippov, M. Kramer, Pulsar magnetospheres and their radiation. Ann. Rev. Astron. Astrophys. 60(1), 495–558 (2022). https://doi.org/10.1146/annurev-astro-052920-112338

    Article  ADS  Google Scholar 

  • A. Philippov, A. Tchekhovskoy, J.G. Li, Time evolution of pulsar obliquity angle from 3D simulations of magnetospheres. MNRAS 441(3), 1879–1887 (2014). https://doi.org/10.1093/mnras/stu591, 1311.1513

  • A.A. Philippov, A. Spitkovsky, Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of axisymmetric pulsars. ApJ 785(2), L33 (2014). https://doi.org/10.1088/2041-8205/785/2/L33, 1312.4970

  • A.A. Philippov, B. Cerutti, A. Tchekhovskoy, A. Spitkovsky, Ab initio pulsar magnetosphere: the role of general relativity. ApJ 815(2), L19 (2015a). https://doi.org/10.1088/2041-8205/815/2/L19, 1510.01734

  • A.A. Philippov, A. Spitkovsky, B. Cerutti, Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. ApJ 801(1), L19 (2015b). https://doi.org/10.1088/2041-8205/801/1/L19, 1412.0673

  • P. Pihajoki, M. Mannerkoski, J. Nättilä, P.H. Johansson, General purpose ray tracing and polarized radiative transfer in general relativity. ApJ 863(1), 8 (2018). https://doi.org/10.3847/1538-4357/aacea0, 1804.04670

  • A.Y. Potekhin, Atmospheres and radiating surfaces of neutron stars. Phys. Usp. 57(8), 735–770 (2014). https://doi.org/10.3367/UFNe.0184.201408a.0793, 1403.0074

  • J. Poutanen, Accurate analytic formula for light bending in Schwarzschild metric. A&A 640, A24 (2020a). https://doi.org/10.1051/0004-6361/202037471, 1909.05732

  • J. Poutanen, Relativistic rotating vector model for x-ray millisecond pulsars. A&A 641, A166 (2020b). https://doi.org/10.1051/0004-6361/202038689, 2006.10448

  • J. Poutanen, A.M. Beloborodov, Pulse profiles of millisecond pulsars and their Fourier amplitudes. MNRAS 373, 836–844 (2006). https://doi.org/10.1111/j.1365-2966.2006.11088.x, arXiv:astro-ph/0608663

  • J. Poutanen, M. Gierliński, On the nature of the x-ray emission from the accreting millisecond pulsar SAX J1808.4-3658. MNRAS 343, 1301–1311 (2003). https://doi.org/10.1046/j.1365-8711.2003.06773.x

  • A. Prabhu, Axion production in pulsar magnetosphere gaps. Phys. Rev. D 104(5), 055038 (2021). https://doi.org/10.1103/PhysRevD.104.055038, 2104.14569

  • V. Radhakrishnan, D.J. Cooke, Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969)

    ADS  Google Scholar 

  • T.E. Riley, A.L. Watts, S. Bogdanov, P.S. Ray, R.M. Ludlam, S. Guillot, Z. Arzoumanian, C.L. Baker, A.V. Bilous, D. Chakrabarty, K.C. Gendreau, A.K. Harding, W.C.G. Ho, J.M. Lattimer, S.M. Morsink, T.E. Strohmayer, A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. ApJ 887(1), L21 (2019). https://doi.org/10.3847/2041-8213/ab481c, 1912.05702

  • T.E. Riley, A.L. Watts, P.S. Ray, S. Bogdanov, S. Guillot, S.M. Morsink, A.V. Bilous, Z. Arzoumanian, D. Choudhury, J.S. Deneva, K.C. Gendreau, A.K. Harding, W.C.G. Ho, J.M. Lattimer, M. Loewenstein, R.M. Ludlam, C.B. Markwardt, T. Okajima, C. Prescod-Weinstein, R.A. Remillard, M.T. Wolff, E. Fonseca, H.T. Cromartie, M. Kerr, T.T. Pennucci, A. Parthasarathy, S. Ransom, I. Stairs, L. Guillemot, I. Cognard, A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. ApJ 918(2), L27 (2021). https://doi.org/10.3847/2041-8213/ac0a81, 2105.06980

  • R.W. Romani, D. Kandel, A.V. Filippenko, T.G. Brink, W. Zheng, PSR J0952-0607: the fastest and heaviest known galactic neutron star. ApJ 934(2), L18 (2022). https://doi.org/10.3847/2041-8213/ac8007, 2207.05124

  • M. Ruderman, Crust-breaking by neutron superfluids and the Vela pulsar glitches. ApJ 203, 213–222 (1976). https://doi.org/10.1086/154069

    Article  ADS  Google Scholar 

  • M. Ruderman, A.M. Beloborodov, Thermal emission areas of heated neutron star polar caps. Ap&SS 308(1–4), 419–422 (2007). https://doi.org/10.1007/s10509-007-9332-z

    Article  ADS  Google Scholar 

  • T. Salmi, J. Nättilä, J. Poutanen, Bayesian parameter constraints for neutron star masses and radii using x-ray timing observations of accretion-powered millisecond pulsars. A&A 618, A161 (2018). https://doi.org/10.1051/0004-6361/201833348, 1805.01149

  • E.T. Scharlemann, R.V. Wagoner, Aligned rotating magnetospheres. General analysis. ApJ 182, 951–960 (1973). https://doi.org/10.1086/152195

    Google Scholar 

  • H. Schatz, L. Bildsten, A. Cumming, M. Wiescher, The rapid proton process ashes from stable nuclear burning on an accreting neutron star. ApJ 524(2), 1014–1029 (1999). https://doi.org/10.1086/307837, astro-ph/9905274

  • H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F.K. Thielemann, M. Wiescher, End point of the rp process on accreting neutron stars. Phys. Rev. Lett. 86(16), 3471–3474 (2001). https://doi.org/10.1103/PhysRevLett.86.3471, astro-ph/0102418

  • H. Schatz, S. Gupta, P. Möller, M. Beard, E.F. Brown, A.T. Deibel, L.R. Gasques, W.R. Hix, L. Keek, R. Lau, A.W. Steiner, M. Wiescher, Strong neutrino cooling by cycles of electron capture and β decay in neutron star crusts. Nature 505(7481), 62–65 (2014). https://doi.org/10.1038/nature12757, 1312.2513

  • S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983)

    Book  Google Scholar 

  • L. Sidoli, G.L. Israel, P. Esposito, G.A. Rodríguez Castillo, K. Postnov,) AX J1910.7+0917: the slowest x-ray pulsar. MNRAS 469(3), 3056–3061 (2017). https://doi.org/10.1093/mnras/stx1105, 1705.01791

  • L. Sironi, I. Plotnikov, J. Nättilä, A.M. Beloborodov, Coherent electromagnetic emission from relativistic magnetized shocks. Phys. Rev. Lett. 127(3), 035101 (2021). https://doi.org/10.1103/PhysRevLett.127.035101, 2107.01211

  • A. Spitkovsky, Time-dependent force-free pulsar magnetospheres: axisymmetric and oblique rotators. ApJ 648(1), L51–L54 (2006). https://doi.org/10.1086/507518, astro-ph/0603147

  • A.W. Steiner, C.O. Heinke, S. Bogdanov, C.K. Li, W.C.G. Ho, A. Bahramian, S. Han, Constraining the mass and radius of neutron stars in globular clusters. MNRAS 476(1), 421–435 (2018). https://doi.org/10.1093/mnras/sty215, 1709.05013

  • T.E. Strohmayer, E.F. Brown, A remarkable 3 hour thermonuclear burst from 4U 1820-30. ApJ 566(2), 1045–1059 (2002). https://doi.org/10.1086/338337, astro-ph/0108420

  • P.A. Sturrock, A model of pulsars. ApJ 164, 529 (1971). https://doi.org/10.1086/150865

    Article  ADS  Google Scholar 

  • V. Suleimanov, J. Poutanen, M. Revnivtsev, K. Werner, A neutron star stiff equation of state derived from cooling phases of the x-ray burster 4U 1724-307. ApJ 742(2), 122 (2011). https://doi.org/10.1088/0004-637X/742/2/122, 1004.4871

  • V.F. Suleimanov, D. Klochkov, G.G. Pavlov, K. Werner, Carbon neutron star atmospheres. ApJS 210(1), 13 (2014). https://doi.org/10.1088/0067-0049/210/1/13, 1311.6037

  • V.F. Suleimanov, J. Poutanen, D. Klochkov, K. Werner, Measuring the basic parameters of neutron stars using model atmospheres. Eur. Phys. J. A 52, 20 (2016). https://doi.org/10.1140/epja/i2016-16020-7, 1510.06962

  • V.F. Suleimanov, J. Poutanen, J. Nättilä, J.J.E. Kajava, M.G. Revnivtsev, K. Werner, The direct cooling tail method for x-ray burst analysis to constrain neutron star masses and radii. MNRAS 466(1), 906–913 (2017). https://doi.org/10.1093/mnras/stw3132, 1611.09885

  • V.F. Suleimanov, J. Poutanen, K. Werner, Observational appearance of rapidly rotating neutron stars. X-ray bursts, cooling tail method, and radius determination. A&A 639, A33 (2020). https://doi.org/10.1051/0004-6361/202037502, 2005.09759

  • R. Svensson, Electron-positron pair equilibria in relativistic plasmas. ApJ 258, 335–348 (1982a). https://doi.org/10.1086/160082

    Article  ADS  Google Scholar 

  • R. Svensson, The pair annihilation process in relativistic plasmas. ApJ 258, 321–334 (1982b). https://doi.org/10.1086/160081

    Article  ADS  Google Scholar 

  • C. Thompson, R.C. Duncan, The soft gamma repeaters as very strongly magnetized neutron stars – I. Radiative mechanism for outbursts. MNRAS 275(2), 255–300 (1995). https://doi.org/10.1093/mnras/275.2.255

    Google Scholar 

  • A.N. Timokhin, On the force-free magnetosphere of an aligned rotator. MNRAS 368(3), 1055–1072 (2006). https://doi.org/10.1111/j.1365-2966.2006.10192.x, astro-ph/0511817

  • P. Tinyakov, M. Pshirkov, S. Popov, Astroparticle physics with compact objects. Universe 7(11), 401 (2021). https://doi.org/10.3390/universe7110401, 2110.12298

  • A. Tokovinin, The updated multiple star catalog. ApJS 235(1), 6 (2018). https://doi.org/10.3847/1538-4365/aaa1a5, 1712.04750

  • N.N. Weinberg, L. Bildsten, H. Schatz, Exposing the nuclear burning ashes of radius expansion type I x-ray bursts. ApJ 639(2), 1018–1032 (2006). https://doi.org/10.1086/499426, astro-ph/0511247

  • L. Woltjer, X-rays and type I supernova remnants. ApJ 140, 1309–1313 (1964). https://doi.org/10.1086/148028

    Article  ADS  MathSciNet  Google Scholar 

  • H. Worpel, D.K. Galloway, D.J. Price, Evidence for accretion rate change during type I x-ray bursts. ApJ 772(2), 94 (2013). https://doi.org/10.1088/0004-637X/772/2/94, 1303.4824

  • H. Worpel, D.K. Galloway, D.J. Price, Evidence for enhanced persistent emission during sub-eddington thermonuclear bursts. ApJ 801(1), 60 (2015). https://doi.org/10.1088/0004-637X/801/1/60, 1501.02070

  • D.G. Yakovlev, P. Haensel, G. Baym, C. Pethick, Lev Landau and the concept of neutron stars. Phys. Usp. 56(3), 289–295 (2013). https://doi.org/10.3367/UFNe.0183.201303f.0307, 1210.0682

  • G. Zhang, M. Méndez, M. Zamfir, A. Cumming, The link between coherent burst oscillations, burst spectral evolution and accretion state in 4U 1728-34. MNRAS 455(2), 2004–2017 (2016). https://doi.org/10.1093/mnras/stv2482, 1510.07213

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joonas Nättilä .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nättilä, J., Kajava, J.J.E. (2023). Fundamental Physics with Neutron Stars. In: Bambi, C., Santangelo, A. (eds) Handbook of X-ray and Gamma-ray Astrophysics. Springer, Singapore. https://doi.org/10.1007/978-981-16-4544-0_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4544-0_105-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4544-0

  • Online ISBN: 978-981-16-4544-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics