Skip to main content

Wireless Electricity Transfer Using Inductive Power Transfer System

  • Conference paper
  • First Online:
Advanced Computational Paradigms and Hybrid Intelligent Computing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1373))

Abstract

A wireless electricity transfer (WET) method using inductive power transfer technique is discussed in this paper. Although a huge number of researcher have produced various methods to transfer electrical energy from one place to another without using wire, the power transfer capability was not sufficient. The objective of this paper is to improve the power transfer capability in WET. A high-frequency power inverter is used to produce a high-frequency supply for the sending end circuit. High-frequency switching signal is produced using Arduino. A series-parallel resonating arrangement is used in this paper to maximize the output voltage of the receiving end circuit. The results show that the setup can successfully transfer power from sending end side to the receiving end side. The variation of output voltage and the amount of power with change in number of turns in both primary and secondary circuit is also observed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Secor, H.W.: Tesla apparatus and experiments—how to build both large and small Tesla and Oudin coils and how to carry on spectacular experiments with them. In: Practical Electrics (1921)

    Google Scholar 

  2. Wang, G., Liu, W., Sivaprakasam, M., Zhou, M., Weiland, J.D., Humayun, M.S.: A dual band wireless power and data telemetry for retinal prosthesis. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4392–4395. IEEE (2006)

    Google Scholar 

  3. Wang, G., Liu, W., Sivaprakasam, M., Kendir, G.A.: Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. IEEE Trans. Circ. Syst. I: Reg. Pap. 52(10), 2109–2117 (2005)

    Article  Google Scholar 

  4. Sauer, C., Stanacevic, M., Cauwenberghs, G., Thakor, N.: Power harvesting and telemetry in CMOS for implanted devices. IEEE Trans. Circ. Syst. I: Reg. Pap. 52(12), 2605–2613 (2005)

    Article  Google Scholar 

  5. Inanlou, F., Ghovanloo, M.: Wideband near-field data transmission using pulse harmonic modulation. IEEE Trans. Circ. Syst. I: Reg. Pap. 58(1), 186–195 (2010)

    MathSciNet  Google Scholar 

  6. Ghovanloo, M., Najafi, K.: A modular 32-site wireless neural stimulation microsystem. IEEE J. Solid State Circ. 39(12), 2457–2466 (2004)

    Article  Google Scholar 

  7. Zumsteg, Z.S., Kemere, C., O’Driscoll, S., Santhanam, G., Ahmed, R.E., Shenoy, K.V., Meng, T.H.: Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans. Neural Syst. Rehab. Eng. 13(3), 272–279 (2005)

    Article  Google Scholar 

  8. Harrison, R.R., Watkins, P.T., Kier, R.J., Lovejoy, R.O., Black, D.J., Greger, B., Solzbacher, F.: A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE J. Solid State Circ. 42(1), 123–133 (2006)

    Article  Google Scholar 

  9. Lee, S.B., Lee, H.-M., Kiani, M., Jow, U.-M., Ghovanloo, M.: An inductively powered scalable 32-channel wireless neural recording system-on-a-chip for neuroscience applications. IEEE Trans. Biomed. Circ. Syst. 4(6), 360–371 (2010)

    Article  Google Scholar 

  10. Shameli, A., Safarian, A., Rofougaran, A., Rofougaran, M., Castaneda, J., De Flaviis, F.: A UHF near-field RFID system with fully integrated transponder. IEEE Trans. Microwave Theory Techn. 56(5), 1267–1277 (2008)

    Article  Google Scholar 

  11. Radecki, A., Chung, H., Yoshida, Y., Miura, N., Shidei, T., Ishikuro, H., Kuroda, T.: 6 w/25 mm 2 wireless power transmission for non-contact wafer-level testing. IEICE Trans. Electron. 95(4), 668–676 (2012)

    Article  Google Scholar 

  12. Shi, X., Qi, C., Qu, M., Ye, S., Wang, G.: Effects of coil locations on wireless power transfer via magnetic resonance coupling. Appl. Comput. Electromagnet. Soc. J. 31(3), 270–278 (2016)

    Google Scholar 

  13. Pantic, Z., Lee, K., Lukic, S.M.: Multifrequency inductive power transfer. IEEE Trans. Power Electron. 29(11), 5995–6005 (2014)

    Article  Google Scholar 

  14. Dionigi, M., Mongiardo, M.: A novel resonator for simultaneous wireless power transfer and near field magnetic communications. In: 2012 IEEE/MTT-S International Microwave Symposium Digest, pp. 1–3. IEEE (2012)

    Google Scholar 

  15. Nema, A., Gupta, M., Dhiman, M., Saini, N., Bohare, A., Verma, R.: Design of efficient transmission in wireless electricity transmission using radio frequency (2020)

    Google Scholar 

  16. Ranabhat, A.: Wireless power transfer (2020)

    Google Scholar 

  17. Lee, S., Huh, J., Park, C., Choi, N.-S., Cho, G.-H., Rim, C.-T.: On-line electric vehicle using inductive power transfer system. In: 2010 IEEE Energy Conversion Congress and Exposition, pp. 1598–1601. IEEE (2010)

    Google Scholar 

  18. Huh, J., Lee, W., Cho, G.-H., Lee, B., Rim, C.-T.: Characterization of novel inductive power transfer systems for on-line electric vehicles. In: Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1975–1979. IEEE (2011)

    Google Scholar 

  19. Huh, J., Lee, S., Park, C., Cho, G.-H., Rim, C.-T.: High performance inductive power transfer system with narrow rail width for on-line electric vehicles. In: 2010 IEEE Energy Conversion Congress and Exposition, pp. 647–651. IEEE (2010)

    Google Scholar 

  20. Park, C., Lee, S., Cho, G.-H., Rim, C.T.: Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans. Power Electron. 30(2), 817–827 (2014)

    Article  Google Scholar 

  21. Huh, J., Lee, W., Choi, S., Cho, G.-H., Rim, C.-T.: Explicit static circuit model of coupled magnetic resonance system. In: 8th International Conference on Power Electronics-ECCE Asia, pp. 2233–2240. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Sengupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghimirey, S., Roy, C., Sengupta, A. (2022). Wireless Electricity Transfer Using Inductive Power Transfer System. In: Gandhi, T.K., Konar, D., Sen, B., Sharma, K. (eds) Advanced Computational Paradigms and Hybrid Intelligent Computing . Advances in Intelligent Systems and Computing, vol 1373. Springer, Singapore. https://doi.org/10.1007/978-981-16-4369-9_32

Download citation

Publish with us

Policies and ethics