Skip to main content

LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network

  • Reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

The first detection of gravitational waves was made by the two LIGO detectors in the United States one hundred years after general relativity was first described by Einstein. Two years later, Virgo joined LIGO in the second advanced gravitational-wave detector observing run. As of May 2021, 50 gravitational-wave events from mergers of binary black-holes or neutron stars have been published by the LIGO-Virgo Collaboration. KAGRA in Japan is part of this international gravitational wave network since April 2020, and joint observations are anticipated in the next observing run. We briefly introduce the LIGO, Virgo and KAGRA detectors and the remarkable results of gravitational-wave observations up to now. The other articles in this handbook provide a comprehensive overview of the subject at this time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bergmann PG (1957) Summary of the Chapel Hill conference. Rev Mod Phys 29:352–354

    Article  ADS  Google Scholar 

  2. Peters PC, Mathews J (1963) Gravitational radiation from point masses in a Keplerian orbit. Phys Rev 131:435–440

    Article  ADS  MathSciNet  Google Scholar 

  3. Abbott B et al (2004) Detector description and performance for the first coincidence observations between LIGO and GEO. Nucl Instrum Methods Phys Res Sec A 517(1):154–179

    Article  ADS  Google Scholar 

  4. Abbott BP et al (LIGO Scientific Collaboration) (2009) LIGO: the laser interferometer gravitational-wave observatory. Rept Prog Phys 72:076901

    Google Scholar 

  5. Aasi J et al (LIGO Scientific Collaboration) (2015) Advanced LIGO. Class Quant Grav 32:074001

    Google Scholar 

  6. Abbott BP, others (LIGO Scientific Collaboration, Virgo Collaboration) (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(6):061102

    Google Scholar 

  7. Acernese F et al (Virgo Collaboration) (2015) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quant Grav 32(2):024001

    Google Scholar 

  8. Abbott BP et al (LIGO Scientific Collaboration and Virgo Collaboration) (2017) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101

    Google Scholar 

  9. Akutsu T et al (KAGRA Collaboration) (2019) KAGRA: 2.5 generation interferometric gravitational wave detector. Nat Astron 3:35

    Google Scholar 

  10. Abbott BP, others (KAGRA Collaboration, LIGO Scientific Collaboration, Virgo Collaboration) (2020) Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 23:1–69

    Article  ADS  Google Scholar 

  11. Accadia T et al (Virgo Collaboration) (2012) Virgo: a laser interferometer to detect gravitational waves. J Instrum 7:3012

    Google Scholar 

  12. Braccini S et al (2005) Measurement of the seismic attenuation performance of the VIRGO Superattenuator. Astropart Phys 23:557

    Article  ADS  Google Scholar 

  13. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2017) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101

    Google Scholar 

  14. Acernese F et al (Virgo Collaboration) (2019) Increasing the astrophysical reach of the Advanced Virgo detector via the application of squeezed vacuum states of light. Phys Rev Lett 123:231108

    Google Scholar 

  15. Akutsu T et al (KAGRA Collaboration) (2021) Overview of KAGRA: detector design and construction history. Prog Theor Exp Phys 2021:05A101

    Google Scholar 

  16. Akutsu T et al (KAGRA Collaboration) (2018) Construction of KAGRA: an underground gravitational wave observatory. Prog Theor Exp Phys 1:013F01

    Google Scholar 

  17. Akutsu T et al (KAGRA Collaboration) (2019) First cryogenic test operation of underground km-scale gravitational-wave observatory KAGRA. Class Quant Grav 36:165008

    Google Scholar 

  18. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2016) GW150914: the Advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103

    Google Scholar 

  19. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2016) The rate of binary black hole mergers inferred from Advanced LIGO observations surrounding GW150914. Astrophys J Lett 833(1):L1

    Google Scholar 

  20. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2016) Tests of general relativity with GW150914. Phys Rev Lett 116(22):221101. [Erratum: Phys Rev Lett 121:129902 (2018)]

    Google Scholar 

  21. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2016) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818(2):L22

    Google Scholar 

  22. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2016) Binary black hole mergers in the first Advanced LIGO observing run. Phys Rev X 6(4):041015. [Erratum: Phys Rev X 8:039903 (2018)]

    Google Scholar 

  23. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration, with other astronomical observatories) (2017) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848:L12

    Google Scholar 

  24. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2019) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9:031040

    Google Scholar 

  25. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration) (2021) GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys Rev X 11:021053

    Google Scholar 

  26. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration) (2021) Population properties of compact objects from the second LIGO-Virgo gravitational-wave transient catalog. Astrophys J Lett 913:7

    Google Scholar 

  27. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration) (2021) Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys Rev D 103:122002

    Google Scholar 

  28. Sachdev S et al (2020) An early-warning system for electromagnetic follow-up of gravitational-wave events. Astrophys J Lett 905(2):L25

    Article  ADS  Google Scholar 

  29. Magee R et al (2021) First demonstration of early warning gravitational wave alerts. Astrophys J Lett 910(2):L21

    Article  ADS  Google Scholar 

  30. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Upper limits on the isotropic gravitational-wave background from Advanced LIGO’s and Advanced Virgo’s third observing run. arXiv:2101.12130

    Google Scholar 

  31. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo. arXiv:2105.11641

    Google Scholar 

  32. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910. arXiv:2104.14417

    Google Scholar 

  33. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Diving below the spin-down limit: constraints on gravitational waves from the energetic young pulsar PSR J0537-6910. Astrophys J Lett 913

    Google Scholar 

  34. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration) (2021) All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Phys Rev D 103(6):064017

    Google Scholar 

  35. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Constraints on cosmic strings using data from the third Advanced LIGO-Virgo observing run. Phys Rev Lett 126:241102

    Google Scholar 

  36. Abbott R et al (LIGO Scientific Collaboration, Virgo Collaboration, KAGRA Collaboration) (2021) Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run. arXiv:2105.13085

    Google Scholar 

  37. Abbott BP et al (LIGO Scientific Collaboration, Virgo Collaboration) (2020) Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of Advanced LIGO and Advanced Virgo. Phys Rev D 101(8):084002

    Google Scholar 

  38. Saleem M et al (2021) The science case for LIGO-India. arXiv:2105.01716

    Google Scholar 

  39. Punturo M et al (2010) The Einstein telescope: a third-generation gravitational wave observatory. Class Quant Grav 27:194002

    Article  ADS  Google Scholar 

  40. Reitze D et al (2019) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. arXiv:1907.04833

    Google Scholar 

  41. Abbott BP et al (LIGO Scientific Collaboration) Exploring the sensitivity of next generation gravitational wave detectors. Class Quant Grav 34(4):044001 (2017)

    Google Scholar 

  42. Ackley K et al (2020) Neutron star extreme matter observatory: a kilohertz-band gravitational-wave detector in the global network. Publ Astron Soc Aust 37:e047

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Brady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brady, P., Losurdo, G., Shinkai, H. (2022). LIGO, VIRGO, and KAGRA as the International Gravitational Wave Network. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-16-4306-4_51

Download citation

Publish with us

Policies and ethics