Skip to main content

Application of Adsorbents Prepared from Waste for the Removal of Heavy Metals from Water and Wastewater

  • Reference work entry
  • First Online:
Handbook of Solid Waste Management

Abstract

In the recent decades, the effects of the heavy metal pollution on the environment and public health are widely considered as a global issue. Several methods have been widely used for removal of the heavy metals from water and wastewater; among them, adsorption processes as a simple and effective process are widely applied for this purpose, and various types of the materials including activated carbon, zeolites, biosorbents, and raw materials, have been utilized as adsorbents sources. The conversion of the waste materials such as ash, sawdust, and activated sludge to the adsorbents can be described as an effective strategy for waste management and treatment; due to availability, low in cost, and high performance, these prepared adsorbents from waste materials are economic and eco-friendly. In this chapter, a wide range of prepared adsorbents from low-cost and waste materials for heavy metals removal from aqueous media were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • O.O. Abdulrasaq, O.G. Basiru, Removal of copper (ii), iron (iii) and lead (ii) ions from mono-component simulated waste effluent by adsorption on coconut husk. Afr. J. Environ. Sci. Technol. 4(6), 382–387 (2010)

    Article  CAS  Google Scholar 

  • A. Afkhami, T. Madrakian, A. Amini, Z. Karimi, Effect of the impregnation of carbon cloth with ethylenediaminetetraacetic acid on its adsorption capacity for the adsorption of several metal ions. J. Hazard. Mater. 150(2), 408–412 (2008)

    Article  CAS  Google Scholar 

  • M. Ahmad, A.R. Usman, S.S. Lee, S.-C. Kim, J.-H. Joo, J.E. Yang, Y.S. Ok, Eggshell and coral wastes as low cost sorbents for the removal of pb2+, cd2+ and Cu2+ from aqueous solutions. J. Ind. Eng. Chem. 18(1), 198–204 (2012)

    Article  CAS  Google Scholar 

  • A. Ahmad, A. Khatoon, S.-H. Mohd-Setapar, R. Kumar, M. Rafatullah, Chemically oxidized pineapple fruit peel for the biosorption of heavy metals from aqueous solutions. Desalinat. Water Treat. 57(14), 6432–6442 (2016)

    Article  CAS  Google Scholar 

  • M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interf. Sci. 166(1–2), 36–59 (2011)

    Article  CAS  Google Scholar 

  • M.J.K. Ahmed, M. Ahmaruzzaman, A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J. Water Process Eng. 10, 39–47 (2016)

    Article  Google Scholar 

  • H.K. Alluri, S.R. Ronda, V.S. Settalluri, J.S. Bondili, V. Suryanarayana, P. Venkateshwar, Biosorption: an eco-friendly alternative for heavy metal removal. Afr. J. Biotechnol. 6(25), 2924–2931 (2007)

    Article  CAS  Google Scholar 

  • T. Anirudhan, S. Sreekumari, Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23(12), 1989–1998 (2011)

    Article  CAS  Google Scholar 

  • R. Apiratikul, P. Pavasant, Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour. Technol. 99(8), 2766–2777 (2008)

    Article  CAS  Google Scholar 

  • S.H. Asl, M. Ahmadi, M. Ghiasvand, A. Tardast, R. Katal, Artificial neural network (ANN) approach for modeling of Cr(vi) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J. Ind. Eng. Chem. 19(3), 1044–1055 (2013)

    Article  CAS  Google Scholar 

  • S. Babel, T. Kurniawan, Various treatment technologies to remove arsenic and mercury from contaminated groundwater: an overview. In: Proceedings of the First International Symposium on Southeast Asian Water Environment, Bangkok, Thailand, 24–25 October, pp. 433–440. (2005)

    Google Scholar 

  • R. Baccar, J. Bouzid, M. Feki, A. Montiel, Preparation of activated carbon from tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J. Hazard. Mater. 162(2–3), 1522–1529 (2009)

    Article  CAS  Google Scholar 

  • C.A. Başar, A. Karagunduz, B. Keskinler, A. Cakici, Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon (pac). Appl. Surf. Sci. 218(1–4), 170–175 (2003)

    Article  Google Scholar 

  • S. Bhuvaneshwari, D. Sruthi, V. Sivasubramanian, K. Kanthimathy, Regeneration of chitosan after heavy metal sorption. J. Scientific Indust. Res. (JSIR) 71, 266–269 (2012)

    CAS  Google Scholar 

  • A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: a review. Ecotoxicol. Environ. Saf. 148, 702–712 (2018)

    Article  CAS  Google Scholar 

  • S. Chamarthy, C.W. Seo, W.E. Marshall, Adsorption of selected toxic metals by modified peanut shells. J. Chem. Technol. Biotechnol. 76(6), 593–597 (2001)

    Article  CAS  Google Scholar 

  • Q. Chang, G. Wang, Study on the macromolecular coagulant PEX which traps heavy metals. Chem. Eng. Sci. 62(17), 4636–4643 (2007)

    Article  CAS  Google Scholar 

  • K.-L. Chang, J.-F. Hsieh, B.-M. Ou, M.-H. Chang, W.-Y. Hseih, J.-H. Lin, P.-J. Huang, K.-F. Wong, S.-T. Chen, Adsorption studies on the removal of an endocrine-disrupting compound (bisphenol a) using activated carbon from rice straw agricultural waste. Sep. Sci. Technol. 47(10), 1514–1521 (2012)

    Article  CAS  Google Scholar 

  • H.-D. Choi, J.-M. Cho, K. Baek, J.-S. Yang, J.-Y. Lee, Influence of cationic surfactant on adsorption of Cr(vi) onto activated carbon. J. Hazard. Mater. 161(2–3), 1565–1568 (2009)

    Article  CAS  Google Scholar 

  • H. Demiral, C. Güngör, Adsorption of copper (ii) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 124, 103–113 (2016)

    Article  CAS  Google Scholar 

  • A. Demirbaş, Kinetics for non-isothermal flash pyrolysis of hazelnut shell. Bioresour. Technol. 66, 247–252 (1998)

    Article  Google Scholar 

  • E. Demirbas, N. Dizge, M. Sulak, M. Kobya, Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 148(2–3), 480–487 (2009)

    Article  CAS  Google Scholar 

  • P. Devi, A.K. Saroha, Improvement in performance of sludge-based adsorbents by controlling key parameters by activation/modification: a critical review. Crit. Rev. Environ. Sci. Technol. 46(21–22), 1704–1743 (2016)

    Article  CAS  Google Scholar 

  • J. Duan, Q. Lu, R. Chen, Y. Duan, L. Wang, L. Gao, S. Pan, Synthesis of a novel flocculant on the basis of crosslinked konjac glucomannan-graft-polyacrylamide-co-sodium xanthate and its application in removal of Cu2+ ion. Carbohydr. Polym. 80(2), 436–441 (2010)

    Article  CAS  Google Scholar 

  • A. El Samrani, B. Lartiges, F. Villiéras, Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res. 42(4–5), 951–960 (2008)

    Article  Google Scholar 

  • H. Esfandian, M. Parvini, B. Khoshandam, A. Samadi-Maybodi, Artificial neural network (ann) technique for modeling the mercury adsorption from aqueous solution using sargassum bevanom algae. Desalinat. Water Treat. 57(37), 17206–17219 (2016)

    Article  CAS  Google Scholar 

  • S. Faust, O. Aly, Biological activated carbon treatment of drinking water, in Adsorption Process for Water Treatment, (Butterworth Publishers, Stoneham, 1987), pp. 433–470

    Chapter  Google Scholar 

  • A. Figoli, A. Cassano, A. Criscuoli, M.S.I. Mozumder, M.T. Uddin, M.A. Islam, E. Drioli, Influence of operating parameters on the arsenic removal by nanofiltration. Water Res. 44(1), 97–104 (2010)

    Article  CAS  Google Scholar 

  • M. Ghorbani, H. Esfandian, N. Taghipour, R. Katal, Application of polyaniline and polypyrrole composites for paper mill wastewater treatment. Desalination 263(1–3), 279–284 (2010)

    Article  CAS  Google Scholar 

  • M.H. Gonzalez, G.C. Araújo, C.B. Pelizaro, E.A. Menezes, S.G. Lemos, G.B. De Sousa, A.R.A. Nogueira, Coconut coir as biosorbent for Cr(vi) removal from laboratory wastewater. J. Hazard. Mater. 159(2–3), 252–256 (2008)

    Article  CAS  Google Scholar 

  • G. Gottardi, E. Galli, Natural zeolites, vol 526 (Springer, New York, 1985)

    Book  Google Scholar 

  • V.A. Grover, J. Hu, K.E. Engates, H.J. Shipley, Adsorption and desorption of bivalent metals to hematite nanoparticles. Environ. Toxicol. Chem. 31(1), 86–92 (2012)

    Article  CAS  Google Scholar 

  • A. Hamadi, K. Nabih, Synthesis of zeolites materials using fly ash and oil shale ash and their applications in removing heavy metals from aqueous solutions. J. Chemother. 2018, 1–12 (2018)

    Google Scholar 

  • M.A. Hashem, Adsorption of lead ions from aqueous solution by okra wastes. Int. J. Phys. Sci. 2(7), 178–184 (2007)

    Google Scholar 

  • H.-J. Hong, H. Kim, K. Baek, J.-W. Yang, Removal of arsenate, chromate and ferricyanide by cationic surfactant modified powdered activated carbon. Desalination 223(1–3), 221–228 (2008)

    Article  CAS  Google Scholar 

  • T. Hsien, Y. Liu, Desorption of cadmium from porous chitosan beads. Adv. Desalinat., 163–180 (2012)

    Google Scholar 

  • Office nationale des hydrocarbures et des mines (onyhm). http://www.Onhym.Com/. (2020)

  • T. Ideriah, O. David, D. Ogbonna, Removal of heavy metal ions in aqueous solutions using palm fruit fibre as adsorbent. J. Environ. Chem. Ecotoxicol 4(4), 82–90 (2012)

    CAS  Google Scholar 

  • M. Ince, O.K. Ince, An overview of adsorption technique for heavy metal removal from water/wastewater: a critical review. Int. J. Pure Appl. Sci. 3(2), 10–19 (2017)

    Article  Google Scholar 

  • K. Jayaram, M.J.J.o.H.M Prasad, Removal of Pb(ii) from aqueous solution by seed powder of Prosopis juliflora dc. J. Hazard. Mater. 169(1–3), 991–997 (2009)

    Article  CAS  Google Scholar 

  • N. Johan, S. Kutty, M. Isa, N. Muhamad, H. Hashim, Adsorption of copper by using microwave incinerated rice husk ash (mirha). Int. J. Civil Environ. Eng. Sci. 3(4), 211–215 (2011)

    Google Scholar 

  • S.J. Kakalanga, X.B. Jabulani, O.B. Olutoyin, O.O. Utieyin, Screening of agricultural waste for Ni(ii) adsorption: kinetics, equilibrium and thermodynamic studies. Int. J. Phys. Sci. 7(17), 2525–2538 (2012)

    CAS  Google Scholar 

  • M.H. Kalavathy, T. Karthikeyan, S. Rajgopal, L.R. Miranda, Kinetic and isotherm studies of Cu(ii) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci. 292(2), 354–362 (2005)

    Article  CAS  Google Scholar 

  • M.I. Khaskheli, S.Q. Memon, Z.A. Chandio, W.B. Jatoi, M.T. Mahar, F.M. Khokhar, Okra leaves – agricultural waste for the removal of Cr(iii) and Cr(vi) from contaminated water. Am. J. Anal. Chem. 7(4), 395–409 (2016)

    Article  CAS  Google Scholar 

  • Ç. Kırbıyık, M. Kılıç, Ö. Çepelioğullar, A.E. Pütün, Use of sesame stalk biomass for the removal of Ni(ii) and Zn(ii) from aqueous solutions. Water Sci. Technol. 66(2), 231–238 (2012)

    Article  Google Scholar 

  • Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr(vi) in aqueous solutions by uv irradiation with the presence of titanium dioxide. Water Res. 35(1), 135–142 (2001)

    Article  CAS  Google Scholar 

  • R. Kumar, M. Kumar, R. Ahmad, M. Barakat, L-methionine modified dowex-50 ion-exchanger of reduced size for the separation and removal of Cu(ii) and Ni(ii) from aqueous solution. Chem. Eng. J. 218, 32–38 (2013)

    Article  CAS  Google Scholar 

  • D. Lakherwal, Adsorption of heavy metals: a review. Int. J. Environ. Res. Dev. 4(1), 41–48 (2014)

    Google Scholar 

  • H. Lalhruaitluanga, K. Jayaram, M. Prasad, K. Kumar, Lead (ii) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study. J. Hazard. Mater. 175(1–3), 311–318 (2010)

    Article  CAS  Google Scholar 

  • A.P. Lim, A.Z. Aris, A review on economically adsorbents on heavy metals removal in water and wastewater. Rev. Environ. Sci. Bio/Technol. 13(2), 163–181 (2014)

    Article  CAS  Google Scholar 

  • Y. Liu, C. Sun, J. Xu, Y. Li, The use of raw and acid-pretreated bivalve mollusk shells to remove metals from aqueous solutions. J. Hazard. Mater. 168(1), 156–162 (2009)

    Article  CAS  Google Scholar 

  • Q.-S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Appl. Surf. Sci. 256(10), 3309–3315 (2010)

    Article  CAS  Google Scholar 

  • T. Liu, L. Zhao, Z. Wang, Removal of hexavalent chromium from wastewater by Fe0-nanoparticles-chitosan composite beads: Characterization, kinetics and thermodynamics. Water Sci. Technol. 66(5), 1044–1051 (2012)

    Article  CAS  Google Scholar 

  • D. Lu, Q. Cao, X. Cao, F. Luo, Removal of pb (ii) using the modified lawny grass: mechanism, kinetics, equilibrium and thermodynamic studies. J. Hazard. Mater. 166(1), 239–247 (2009)

    Article  CAS  Google Scholar 

  • M. Lundh, L. Jönsson, J. Dahlquist, Experimental studies of the fluid dynamics in the separation zone in dissolved air flotation. Water Res. 34(1), 21–30 (2000)

    Article  CAS  Google Scholar 

  • E. Malkoc, Y. Nuhoglu, Potential of tea factory waste for chromium (vi) removal from aqueous solutions: thermodynamic and kinetic studies. Sep. Purif. Technol. 54(3), 291–298 (2007)

    Article  CAS  Google Scholar 

  • V.M. Martinez-Juarez, J.F. Cárdenas-González, M.E. Torre-Bouscoulet, I. Acosta-Rodríguez, Biosorption of mercury (ii) from aqueous solutions onto fungal biomass. Bioinorg. Chem. Appl. 2012, 156190 (2012)

    Article  Google Scholar 

  • D.H. Moon, K.-W. Kim, I.-H. Yoon, D.G. Grubb, D.-Y. Shin, K.H. Cheong, H.-I. Choi, Y.S. Ok, J.-H. Park, Stabilization of arsenic-contaminated mine tailings using natural and calcined oyster shells. Environ. Earth Sci. 64(3), 597–605 (2011)

    Article  CAS  Google Scholar 

  • Z. Murthy, L.B. Chaudhari, Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters, J. Hazard. Mater. 160, 70–77 (2008)

    Google Scholar 

  • V. Nair, A. Panigrahy, R. Vinu, Development of novel chitosan–lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 254, 491–502 (2014)

    Article  CAS  Google Scholar 

  • C.P. Nanseu-Njiki, S.R. Tchamango, P.C. Ngom, A. Darchen, E. Ngameni, Mercury (ii) removal from water by electrocoagulation using aluminium and iron electrodes. J. Hazard. Mater. 168(2–3), 1430–1436 (2009)

    Article  CAS  Google Scholar 

  • C.M. Nguyen, S. Bang, J. Cho, K.-W. Kim, Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245, 82–94 (2009)

    Google Scholar 

  • M. Omraei, H. Esfandian, R. Katal, M. Ghorbani, Study of the removal of zn (ii) from aqueous solution using polypyrrole nanocomposite. Desalination 271(1–3), 248–256 (2011)

    Article  CAS  Google Scholar 

  • N. Othman, S. Mohd-Asharuddin, M. Azizul-Rahman, An overview of fruit waste as sustainable adsorbent for heavy metal removal. Appl. Mech. Mater. 389, 29–35 (2013)

    Article  Google Scholar 

  • S.-J. Park, Y.-S. Jang, J.-W. Shim, S.-K. Ryu, Studies on pore structures and surface functional groups of pitch-based activated carbon fibers. J. Colloid Interface Sci. 260(2), 259–264 (2003)

    Article  CAS  Google Scholar 

  • K. Periasamy, C. Namasivayam, Removal of copper (ii) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere 32(4), 769–789 (1996)

    Article  CAS  Google Scholar 

  • H. Polat, D. Erdogan, Heavy metal removal from waste waters by ion flotation. J. Hazard. Mater. 148(1–2), 267–273 (2007)

    Article  CAS  Google Scholar 

  • S.M. Praveena, A.Z. Aris, A review of groundwater in islands using swot analysis. World Rev. Sci. Technol. Sustain. Dev. 6(2–4), 186–203 (2009)

    Article  Google Scholar 

  • Q. Qiu, X. Jiang, G. Lv, Z. Chen, S. Lu, M. Ni, J. Yan, X. Deng, Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 335, 156–163 (2018)

    Article  CAS  Google Scholar 

  • S. Quintela, M. Villarán, I.L. De Armentia, E. Elejalde, Ochratoxin a removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan. Food Addit. Con. Part A 29(7), 1168–1174 (2012)

    Article  CAS  Google Scholar 

  • M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of copper and cadmium from the aqueous solutions by activated carbon derived from ceiba pentandra hulls. J. Hazard. Mater. 129(1–3), 123–129 (2006)

    Google Scholar 

  • R. Rehman, Adsorption studies of cadmium (ii) using novel composites of polyaniline with rice husk and saw dust of Eucalyptus camaldulensis. Electronic J. Environ. Agric. Food Chem. 10(10), 2972–2985 (2011)

    Google Scholar 

  • M. Sadrzadeh, T. Mohammadi, J. Ivakpour, N. Kasiri, Neural network modeling of pb2+ removal from wastewater using electrodialysis. Chem. Eng. Process. Process Intensif. 48(8), 1371–1381 (2009)

    Article  CAS  Google Scholar 

  • A. Saeed, M.W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep. Purif. Technol. 45(1), 25–31 (2005)

    Article  CAS  Google Scholar 

  • Ö. Şahin, C. Saka, Preparation and characterization of activated carbon from acorn shell by physical activation with h2o–co2 in two-step pretreatment. Bioresour. Technol. 136, 163–168 (2013)

    Article  Google Scholar 

  • T.A. Saleh, V.K.J. Gupta, Column with cnt/magnesium oxide composite for lead (ii) removal from water. Environ. Sci. Pollut. Res. 19(4), 1224–1228 (2012)

    Article  CAS  Google Scholar 

  • H.M. Salem, E.A. Eweida, A. Farag, Heavy Metals in Drinking Water and their Environmental Impact on Human Health (ICEHM, Cairo University, Cairo, 2000), pp. 542–556

    Google Scholar 

  • G. Sandoval-Flores, S. Alvarado-Reyna, L. Elvir-Padilla, D. Mendoza-Castillo, H. Reynel-Avila, A. Bonilla-Petriciolet, Kinetics, thermodynamics, and competitive adsorption of heavy metals from water using orange biomass. Water Environ. Res. 90(12), 2114–2125 (2018)

    Article  CAS  Google Scholar 

  • N. Seco-Reigosa, S. Peña-Rodríguez, J.C. Nóvoa-Muñoz, M. Arias-Estévez, M.J. Fernández-Sanjurjo, E. Álvarez-Rodríguez, A. Núñez-Delgado, Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture. Environ. Sci. Pollut. Res. 20(4), 2670–2678 (2013)

    Article  CAS  Google Scholar 

  • P. Senthil Kumar, S. Ramalingam, R.V. Abhinaya, S.D. Kirupha, A. Murugesan, S. Sivanesan, Adsorption of metal ions onto the chemically modified agricultural waste. CLEAN Soil Air Water 40(2), 188–197 (2012)

    Article  Google Scholar 

  • R.A. Shawabkeh, D.A. Rockstraw, R.K. Bhada, Copper and strontium adsorption by a novel carbon material manufactured from pecan shells. Carbon 40(5), 781–786 (2002)

    Article  CAS  Google Scholar 

  • N. Singh, S. Gupta, Adsorption of heavy metals: a review. Int. J. Innov. Res. Sci. Eng. Technol. 5(2), 2267–2281 (2016)

    Google Scholar 

  • D. Suteu, D. Bilba, M. Aflori, F. Doroftei, G. Lisa, M. Badeanu, T. Malutan, The seashell wastes as biosorbent for reactive dye removal from textile effluents. Clean Soil Air Water 40(2), 198–205 (2012)

    Article  CAS  Google Scholar 

  • Y.-J. Tu, C.-F. You, Z. Zhang, Y. Duan, J. Fu, D. Xu, Strontium removal in seawater by means of composite magnetic nanoparticles derived from industrial sludge. Water Res. 8(8), 357 (2016)

    Google Scholar 

  • M.-W. Wan, C.-C. Wang, C.-M. Chen, The adsorption study of copper removal by chitosan-coated sludge derived from water treatment plant. Int. J. Environ. Sci. Dev. 4(5), 545 (2013)

    Article  CAS  Google Scholar 

  • F. Zhou, J. Yu, X. Jiang, 3d porous graphene synthesised using different hydrothermal treatment times for the removal of lead ions from an aqueous solution. Micro Nano Lett. 12(5), 308–311 (2017)

    Article  CAS  Google Scholar 

  • F. Zhou, X. Feng, J. Yu, X.J. Jiang, High performance of 3d porous graphene/lignin/sodium alginate composite for adsorption of cd (ii) and pb (ii). Environ. Sci. Pollut. Res. 25(16), 15651–15661 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Katal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Esfandian, H., Taheri, A.H., Eshkalak, S.K., Katal, R. (2022). Application of Adsorbents Prepared from Waste for the Removal of Heavy Metals from Water and Wastewater. In: Baskar, C., Ramakrishna, S., Baskar, S., Sharma, R., Chinnappan, A., Sehrawat, R. (eds) Handbook of Solid Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-16-4230-2_114

Download citation

Publish with us

Policies and ethics