Skip to main content

A Risk-Budgeted Portfolio Selection Strategy Using Invasive Weed Optimization

  • Conference paper
  • First Online:
Proceedings of International Conference on Computational Intelligence

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

For the investors, portfolio selection from the set of assets in the population is very essential practice in the capital market. Risk minimization is one of the main concerns in portfolio selection problem. Therefore, risk distribution is very common practice in risk-budgeted portfolio optimization. In this paper, a novel risk-budgeted portfolio selection strategy using invasive weed optimization (IWO) is proposed to maximize sharp ratio. Invasive weed optimization is a nature based approach inspired by the invasion process of weeds in the plants. The natural invasion has been mathematically modeled to search the optimum solution in the solution space. An experimental study has been done to evaluate the proposed strategy by comparing its performance with Genetic Algorithm on dataset of the S&P BSE Sensex of Indian stock exchange (30 stocks). Study reveals the superior performance of the proposed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Markowitz, Portfolio Selection: Efficient Diversification of Investments (Wiley, New York, 1959)

    Google Scholar 

  2. H. Markowitz, Portfolio selection. J. Finance 7(1), 77–91 (1952)

    Google Scholar 

  3. Y. Jin, R. Qu, J. Atkin, Constrained portfolio optimisation: the state-of-the-art markowitz models, in Proceedings of 5th the International Conference on Operations Research and Enterprise Systems, vol. 1 (2016), pp. 388–395 . https://doi.org/10.5220/0005758303880395.ICORES, ISBN 978-989-758-171-7

  4. Y. Crama, M. Schyns, Simulated annealing for complex portfolio selection problems. Eur. J. Oper. Res. 150(3), 546–571 (2003). https://doi.org/10.1016/S0377-2217(02)00784-1

    Article  MATH  Google Scholar 

  5. K.E. Parsopoulosi, M.N. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization. Nat Comput 1, 235–306 (2002) (Kluwer Academic Publishers, Netherlands)

    Google Scholar 

  6. W. Ting, Y. Xia, The study of model for portfolio investment based on ant colony algorithm, in ETP International Conference on Future Computer and Communication (IEEE, 2009), 978-0-7695–3676–7/09 https://doi.org/10.1109/FCC.2009.71

  7. B. Niu, B. Xue, Li. Li, Y. Chai, Symbiotic Multi-Swarm PSO for Portfolio Optimization Ben. Springer-Verlag, Berlin Heidelberg LNAI 5755, 776–784 (2009)

    Google Scholar 

  8. D. Karaboga, B. Akay, A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31, 61–85 (2009) https://doi.org/10.1007/s10462-009-9127-4 (Springer Science. Business Media)

  9. K. Mazumdar, D. Zhang, Yi. Guo, Portfolio selection and unsystematic risk optimisation using swarm intelligence. J. Bank. Financ. Technol. (2020). https://doi.org/10.1007/s42786-019-00013-xORIGINALPAPER

    Article  Google Scholar 

  10. A. H. L., Liang, Y.-C., Liu, C.-C.: Portfolio optimization using improved artificial bee colony approach, in 2013 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr) (2013). https://doi.org/10.1109/cifer.2013.6611698

  11. H. Zhu, Y. Wang, K. Wang, Y. Chen, Particle swarm optimization (PSO) for the constrained portfolio optimization problem. Expert Syst. Appl. 38(8), 10161–10169 (2011). https://doi.org/10.1016/j.eswa.2011.02.075

    Article  Google Scholar 

  12. Q. Ni, X. Yin, K. Tian, Y. Zhai, Particle swarm optimization with dynamic random population topology strategies for a generalized portfolio selection problem. Nat. Comput. 16(1), 31–44 (2016)

    Article  MathSciNet  Google Scholar 

  13. C. Liu, Y. Yin, Particle swarm optimized analysis of investment decision. Cogn. Syst. Res. 52, 685–690 (2018). https://doi.org/10.1016/j.cogsys.2018.07.032

    Article  Google Scholar 

  14. H. Zhang, Optimization of risk control in financial markets based on particle swarm optimization algorithm. J. Comput. Appl. Math. 112530 (2019). https://doi.org/10.1016/j.cam.2019.112530

  15. P.-W. Tsai, V. Istanda, Review on cat swarm optimization algorithms, in 2013 3rd International Conference on Consumer Electronics (Communications and Networks, 2013). https://doi.org/10.1109/cecnet.2013.6703394

  16. H.M. Kamil, E. Riffi, Portfolio selection using the cat swarm optimization. J. Theoret. Appl. Inf. Technol. 74(3). (2005) ISSN: 1992–8645

    Google Scholar 

  17. M. Tuba, N. Bacanin, Upgraded firefly algorithm for portfolio optimization problem, 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, 978-1-4799-4923–6/14. (2014). https://doi.org/10.1109/UKSim.2014.25

  18. N. Bacanin, B. Pelevic, M. Tuba (2012) Portfolio optimization problem by the firefly algorithm. Mathe Models Eng. Comput. Sci. pp. 63–68, ISBN: 978-1-61804–194–4 (2012)

    Google Scholar 

  19. J. Shoaf, J.A. Foster, Efficient set GA for stock portfolios, in Proceedings of the IEEE Conference on Evolutionary Computation, ICEC. (IEEE, 1998), pp. 354–359

    Google Scholar 

  20. T.J. Chang, S.C. Yang, K.J. Chang, Portfolio optimization problems in different risk measures using genetic algorithm. Expert Syst. Appl. 36, 10529–10537 (2009)

    Article  Google Scholar 

  21. A. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Eco. Inform. 1(4), 355–366 (2006)

    Article  Google Scholar 

  22. A.R. Pouya, M. Solimanpur, M.J. Rezaee, Solving multi-objective portfolio optimization problem using invasive weed optimization. Swarm Evol. Comput. 28, 42–57 (2016)

    Article  Google Scholar 

  23. P. Swain, A.K. Ojha, Portfolio optimization using particle swarm optimization and invasive weed optimization, in D. Dutta, B. Mahanty (eds.) Numerical optimization in engineering and Sciences. Advances in intelligent systems and computing, vol. 979. (Springer, Singapore, 2020). https://doi.org/10.1007/978-981-15-3215-3_30

Download references

Acknowledgements

This work is supported by the major research project funded by ICSSR with sanction No. F.No.-02/47/2019-20/MJ/RP.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shahid, M., Ansari, M.S., Shamim, M., Ashraf, Z. (2022). A Risk-Budgeted Portfolio Selection Strategy Using Invasive Weed Optimization. In: Tiwari, R., Mishra, A., Yadav, N., Pavone, M. (eds) Proceedings of International Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-3802-2_30

Download citation

Publish with us

Policies and ethics