Skip to main content

Ensemble Based-Cross Project Defect Prediction

  • Conference paper
  • First Online:
Ubiquitous Intelligent Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 243))

Abstract

In Software Testing, there are typically two ways to predict defects in the software—within-project defect prediction (WPDP) and cross project defect prediction (CPDP). In this research, we are using a hybrid model for cross project defect prediction. It is a two-phase model consisting of ensemble learning (EL) and genetic algorithm (GA) phase. For our research, we used datasets from the PROMISE repository and created clusters after normalization using k-means clustering algorithm. This further helped us improve the accuracy of the model. Our dataset consists of 22 attributes and were labeled defective or not. Our results show that our hybrid model after implementing k-means clustering achieved an F1 score of 0.666. CPDP is a newer and faster approach for software defect prediction but is often error prone. This method can change the software industry as it will lead to improved software development and faster software delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Wu et al., Cross-project and within-project semisupervised software defect prediction: a unified approach. IEEE Trans. Reliab. 67(2), 581–597 (2018). https://doi.org/10.1109/TR.2018.2804922

    Article  Google Scholar 

  2. F. Wu et al., Cross-project and within-project semi-supervised software defect prediction problems study using a unified solution, in 2017 IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, 2017, pp. 195–197. https://doi.org/10.1109/ICSE-C.2017.72

  3. X. Jing, F. Wu, X. Dong, B. Xu, An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems. IEEE Trans. Softw. Eng. 43(4), 321–339 (2017). https://doi.org/10.1109/TSE.2016.2597849

  4. S. Herbold, A. Trautsch, J. Grabowski, [Journal First] A comparative study to benchmark cross-project defect prediction approaches, in 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), Gothenburg, 2018, pp. 1063–1063. https://doi.org/10.1145/3180155.3182542

  5. X. Xia, D. Lo, S.J. Pan, N. Nagappan, X. Wang, HYDRA: massively compositional model for cross-project defect prediction. IEEE Trans. Softw. Eng. 42(10), 977–998 (2016). https://doi.org/10.1109/TSE.2016.2543218

  6. B. Turhan, On the dataset shift problem in software engineering prediction models. Empir. Softw. Eng. 17, 62–74 (2012). https://doi.org/10.1007/s10664-011-9182-8

    Article  Google Scholar 

  7. M. Cetiner, O.K. Sahingoz, A comparative analysis for machine learning based software defect prediction systems, in 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020, pp. 1–7. https://doi.org/10.1109/ICCCNT49239.2020.9225352

  8. F. Rahman, D. Posnett, I. Herraiz, P. Devanbu, Sample size vs. bias in defect prediction, in Proceedings of the 9th Joint Meeting Foundations Software Engineering, 2013, pp. 147–157

    Google Scholar 

  9. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in Proceedings of the 2nd European Conference on Computational Learning Theory, 1995, pp. 23–37. J. Nam, S.J. Pan, S. Kim, Transfer defect learning, in Proceedings—International Conference on Software Engineering, 2013, pp. 382–391

    Google Scholar 

  10. Y. Zhang, D. Lo, X. Xia, J. Sun, An empirical study of classifier combination for cross-project defect prediction, in 2015 IEEE 39th Annual Computer Software and Applications Conference, Taichung, 2015, pp. 264–269. https://doi.org/10.1109/COMPSAC.2015.58

  11. L. Gong, S. Jiang, L. Bo, L. Jiang, J. Qian, A novel class-imbalance learning approach for both within-project and cross-project defect prediction. IEEE Trans. Reliab. 69(1), 40–54 (2020). https://doi.org/10.1109/TR.2019.2895462

    Article  Google Scholar 

  12. M.F. Sohan, M.I. Jabiullah, S.S.M.M. Rahman, S.M.H. Mahmud, Assessing the effect of imbalanced learning on cross-project software defect prediction, in 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 2019, pp. 1–6. https://doi.org/10.1109/ICCCNT45670.2019.8944622

  13. K. Kohara, T. Kawaoka, Well-balanced learning for reducing the variance of summed squared errors, in Proceedings 1993 The First New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems, Dunedin, New Zealand, 1993, pp. 29–33. https://doi.org/10.1109/ANNES.1993.323089

  14. M. Göl, A. Abur, A modified Chi-Squares test for improved bad data detection, in 2015 IEEE Eindhoven PowerTech, Eindhoven, 2015, pp. 1–5. https://doi.org/10.1109/PTC.2015.7232283

  15. J.D. Souza, B. Parvathavarthini, Machine learning based intrusion detection framework using recursive feature elimination method, in 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 2020, pp. 1–4. https://doi.org/10.1109/ICSCAN49426.2020.9262282

  16. G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella, Multi-objective cross-project defect prediction, in 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation, Luxembourg, 2013, pp. 252–261. https://doi.org/10.1109/ICST.2013.38

  17. Q. Wu et al., Online transfer learning with multiple homogeneous or heterogeneous sources. IEEE Trans. Knowl. Data Eng. 29(7), 1494–1507 (2017). https://doi.org/10.1109/TKDE.2017.2685597

  18. J. Sun, X. Jing, X. Dong, Manifold learning for cross-project software defect prediction, in 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), Nanjing, China, 2018, pp. 567–571. https://doi.org/10.1109/CCIS.2018.8691373

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jindal, R., Ahmad, A., Aditya, A. (2022). Ensemble Based-Cross Project Defect Prediction. In: Karuppusamy, P., Perikos, I., García Márquez, F.P. (eds) Ubiquitous Intelligent Systems. Smart Innovation, Systems and Technologies, vol 243. Springer, Singapore. https://doi.org/10.1007/978-981-16-3675-2_47

Download citation

Publish with us

Policies and ethics