Skip to main content

Data-Based Automatic Covid-19 Rumors Detection in Social Networks

  • Conference paper
  • First Online:
Networking, Intelligent Systems and Security

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 237))

  • 1012 Accesses

Abstract

Social media is one of the largest sources of propagating information; however, it is also a home ground for rumors and misinformation. The recent extraordinary event in 2019, the COVID-19 global pandemic, has spurred a web of misinformation due to its sudden rise and global widespread. False rumors can be very dangerous; therefore, there is a need to tackle the problem of detecting and mitigating false rumors. In this paper, we propose a framework to automatically detect rumor on the individual and network level. We analyzed a large dataset to evaluate different machine learning models. We discovered how all our methods used contributed positively to the precision score but at the expense of higher runtime. The results contributed greatly to the classification of individual tweets as the dataset for the classification task was updated continuously, thereby increasing the number of training examples hourly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://coronavirus.jhu.edu/map.html

  2. 2.

    https://en.wikipedia.org/wiki/Fake_news.

References

  1. W. H. Organization et al.:Coronavirus disease 2019 (covid-19): situation report, 103 (2020)

    Google Scholar 

  2. Zarocostas, J.: How to fight an infodemic. The Lancet 395, 676 (2020)

    Article  Google Scholar 

  3. Anderson, J., Rainie, L.: The Future of Truth and Misinformation Online, vol. 19. Pew Research Center (2017)

    Google Scholar 

  4. Latif, S., Usman, M., Manzoor, S., Iqbal, W., Qadir, J., Tyson, G., Castro, I., Razi, A., Boulos, M.N.K., Weller, A., et al.: Leveraging data science to combat covid-19: a comprehensive review (2020)

    Google Scholar 

  5. Tasnim, S., Hossain, M.M., Mazumder, H.: Impact of rumors or misinformation on coronavirus disease (covid-19) in social media (2020)

    Google Scholar 

  6. Hossain, M.S., Muhammad, G., Alamri, A.: Smart healthcare monitoring: a voice pathology detection paradigm for smart cities. Multimedia Syst. 25(5), 565–575 (2019)

    Article  Google Scholar 

  7. Perrin, C.: Climate feedback accredited by the international fact-checking network at poynter. Clim. Feedback 24 (2017)

    Google Scholar 

  8. Kouzy, R., Abi Jaoude, J., Kraitem, A., El Alam, M. B., Karam, B., Adib, E., Zarka, J.. Traboulsi, C., Akl, E.W., Baddour, K.: Coronavirus goes viral: quantifying the covid-19 misinformation epidemic on twitter. Cureus 12 (2020)

    Google Scholar 

  9. Li, Q., Zhang, Q., Si, L., Liu, Y.: Rumor detection on social media: Datasets, methods and opportunities. arXiv preprint arXiv:1911.07199 (2019)

  10. Shahi, G.K., Dirkson, A., Majchrzak, T.A.: An exploratory study of covid-19 misinformation on twitter. arXiv preprint arXiv:2005.05710 (2020)

  11. Ahmed, H., Traore, I., Saad, S.: Detection of online fake news using n-gram analysis and machine learning techniques. In: International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments. Springer, Berlin, pp. 127–138 (2017)

    Google Scholar 

  12. Bharadwaj, A., Ashar, B.: Source based fake news classification using machine learning. Int. J. Innov. Res. Sci. Eng. Technol. 2320–6710 (2020)

    Google Scholar 

  13. Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395–1405 (2015)

    Google Scholar 

  14. Liu, Y., Wu, Y.-F.B.: Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. In: Thirty-second AAAI conference on artificial intelligence (2018)

    Google Scholar 

  15. Qazvinian, V., Rosengren, E., Radev, D., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the 2011 Conference on Empirical 15 Methods in Natural Language Processing, pp. 1589–1599 (2011)

    Google Scholar 

  16. Al-Rakhami, M.S., Al-Amri, A.M.: Lies kill, facts save: detecting covid-19 misinformation in twitter. IEEE Access 8, 155961–155970 (2020)

    Google Scholar 

  17. Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image features for microblogs news verification. IEEE Trans. Multimedia 19, 598–608 (2016)

    Article  Google Scholar 

  18. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729–736 (2013)

    Google Scholar 

  19. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunking on twitter. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1867–1870 (2015)

    Google Scholar 

  20. Chua, A.Y., Banerjee, S.: Linguistic predictors of rumor veracity on the internet. In: Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, p. 387 (2016)

    Google Scholar 

  21. Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., Su, L., Gao, J.: Eann: event adversarial neural networks for multi-modal fake news detection. In: Proceedings of the 24th acm sigkdd International Conference on Knowledge Discovery & Data Mining (2018), pp. 849–857

    Google Scholar 

  22. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on sina weibo by propagation structures. In: 2015 IEEE 31st International Conference on Data Engineering (IEEE, 2015), pp. 651–662

    Google Scholar 

  23. Hassan, N., Arslan, F., Li, C., Tremayne, M.: Toward automated fact-checking: detecting check-worthy factual claims by claimbuster. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2017), pp. 1803–1812

    Google Scholar 

  24. Liu, X., Li, Q., Nourbakhsh, A., Fang, R., Thomas, M., Anderson, K., Kociuba, R., Vedder, M., Pomerville, S., Wudali, R., et al.: Reuters tracer: a large scale system of detecting & verifying real-time news events from twitter. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management (2016), pp. 207–216

    Google Scholar 

  25. DiFonzo, N., Bordia, P.: Rumor Psychology: Social and Organizational Approaches. American Psychological Association (2007)

    Google Scholar 

  26. Bugge, J.: Rumour has it: a practice guide to working with rumours. Communicating with Disaster Affected Communities (CDAC) (2017)

    Google Scholar 

  27. Vosoughi, S.: Automatic detection and verification of rumors on twitter. Ph.D. thesis, Massachusetts Institute of Technology (2015)

    Google Scholar 

  28. Wu, W., Li, B., Chen, L., Gao, J., Zhang, C.: A review for weighted minhash algorithms. IEEE Trans. Knowl. Data Eng. (2020)

    Google Scholar 

  29. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Serra, G.: A sift-based forensic method for copy–move attack detection and transformation recovery. IEEE Trans. Inf. Forensics Secur. 6, 1099–1110 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks go out to the African Institute for Mathematical Sciences (AIMS) and LIMSAD for their support toward this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bolaji Bamiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bamiro, B., Assayad, I. (2022). Data-Based Automatic Covid-19 Rumors Detection in Social Networks. In: Ben Ahmed, M., Teodorescu, HN.L., Mazri, T., Subashini, P., Boudhir, A.A. (eds) Networking, Intelligent Systems and Security. Smart Innovation, Systems and Technologies, vol 237. Springer, Singapore. https://doi.org/10.1007/978-981-16-3637-0_57

Download citation

Publish with us

Policies and ethics