Skip to main content

Reviewing SDN Adoption Strategies for Next Generation Internet of Things Networks

  • Conference paper
  • First Online:
Smart Systems: Innovations in Computing

Abstract

As Internet of Things networks grow in heterogeneity and complexity, the associated industry needs to improve the performance of traditional network deployments. One of the main relevant evolutions on network architectures is depicted by the remote control of the forwarding state of the equipment. The advance here consists in having the data plane managed by a remotely controlled plane decoupled from the former, enabling to program the behavior of a network without being tied to inflexible rules and conditions. To support this network evolution, software-defined networking (SDN) allows programmability as the main role in improving resource efficiency and increasing service reliability and security. The analysis conducted in this paper aims at reviewing the different adoption strategies to effectively deploy SDN-enabled Next Generation IoT systems, analyzing in detail the variations found between the types of access network layers, and the SDN applications that can be carried out. The analysis ranges from basic deployments (where the concerns are specific to the direct connection end devices-network) to complex, multi-application advanced ones (where alternative configuration and layouts come into play). The paper concludes with the presentation of the approach taken in the project ASSIST-IoT, that will apply the previous knowledge toward the definition of a blueprint architecture for the Next Generation Internet of Things.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IoT Growth Demands Rethink of Long-Term Storage Strategies, says IDC. https://www.idc.com/getdoc.jsp?containerId=prAP46737220

  2. Shafique, K., Khawaja, B.A., Sabir, F., Qazi, S., Mustaqim, M.: Internet of things (IoT) for next-generation smart systems: a review of current challenges, future trends and prospects for emerging 5G-IoT scenarios. IEEE Access 8, 23022–23040 (2020). https://doi.org/10.1109/ACCESS.2020.2970118

    Article  Google Scholar 

  3. International Telcommunication Union: Y.2060: overview of the internet of things. https://www.itu.int/rec/T-REC-Y.2060-201206-I/en

  4. Casado, M., Freedman, M.J., Pettit, J., Luo, J., Mckeown, N., Shenker, S.: Ethane: taking control of the enterprise (2007)

    Google Scholar 

  5. O.N.F.: Software-defined networking: the new norm for networks. In: ONF White Paper, pp. 2–6 (2012)

    Google Scholar 

  6. Salman, O., Elhajj, I.H., Kayssi, A., Chehab, A.: SDN controllers: a comparative study. In: 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6. IEEE (2016)

    Google Scholar 

  7. Bannour, F., Souihi, S., Mellouk, A.: Distributed SDN Control: survey, taxonomy, and Challenges. IEEE Commun. Surv. Tutorials 20, 333–354 (2018). https://doi.org/10.1109/COMST.2017.2782482

    Article  Google Scholar 

  8. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., Shenker, S.: Onix: a distributed control platform for large-scale production networks

    Google Scholar 

  9. Tootoonchian, A., Ganjali, Y.: Hyperflow: a distributed control plane for OpenFlow

    Google Scholar 

  10. Phemius, K., Bouet, M., Leguay, J.: DISCO: distributed multi-domain SDN controllers. In: IEEE/IFIP NOMS 2014—IEEE/IFIP Network Operations and Management Symposium: Management in a Software Defined World. IEEE Computer Society (2014)

    Google Scholar 

  11. Bluetooth® Technology Website. https://www.bluetooth.com/

  12. Zigbee Alliance: Home—Zigbee Alliance. https://zigbeealliance.org/

  13. LoRaWAN® Specification—LoRa Alliance®. https://lora-alliance.org/about-lorawan/

  14. Sigfox Foundation—Small messages, big causes. https://sigfoxfoundation.org/

  15. Chen, M., Miao, Y., Hao, Y., Hwang, K.: Narrow band internet of things. IEEE Access 5, 20557–20577 (2017). https://doi.org/10.1109/ACCESS.2017.2751586

    Article  Google Scholar 

  16. Alenezi, M., Almustafa, K., K.A.: Cloud based SDN and NFV architectures for IoT infrastructure. Egypt. Informatics J. 20, 1–10 (2019). https://doi.org/10.1016/j.eij.2018.03.004

  17. Kobo, H.I., Abu-Mahfouz, A.M., Hancke, G.P.: A survey on software-defined wireless sensor Networks: challenges and design requirements. IEEE Access. 5, 1872–1899 (2017). https://doi.org/10.1109/ACCESS.2017.2666200

    Article  Google Scholar 

  18. Galluccio, L., Milardo, S., Morabito, G., Palazzo, S.: SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution for wireless sensor networks. In: Proceedings—IEEE INFOCOM, pp. 513–521. IEEE (2015)

    Google Scholar 

  19. De Gante, A., Aslan, M., Matrawy, A.: Smart wireless sensor network management based on software-defined networking. In: 2014 27th Biennial Symposium on Communications, QBSC 2014, pp. 71–75. IEEE Computer Society (2014)

    Google Scholar 

  20. Tayyaba, S.K., Shah, M.A., Khan, O.A.: Software defined network (SDN) based internet of things (IoT): a road ahead. In: ACM International Conference Proceeding Series (2017)

    Google Scholar 

  21. Singh, S.K., Singh, R., Kumbhani, B.: The evolution of radio access network towards open-RAN: challenges and opportunities. In: 2020 IEEE Wireless Communications and Networking Conference Workshops, WCNCW 2020 – Proceedings, pp. 1–6. IEEE (2020)

    Google Scholar 

  22. SD-RAN—Open Networking Foundation. https://opennetworking.org/sd-ran/

  23. Cho, H.H., Lai, C.F., Shih, T.K., Chao, H.C.: Integration of SDR and SDN for 5G. IEEE Access 2, 1196–1204 (2014). https://doi.org/10.1109/ACCESS.2014.2357435

    Article  Google Scholar 

  24. Akyildiz, I.F., Wang, P., Lin, S.C.: SoftAir: a software defined networking architecture for 5G wireless systems. Comput. Networks 85, 1–18 (2015). https://doi.org/10.1016/j.comnet.2015.05.007

    Article  Google Scholar 

  25. Alshnta, A.M., Abdollah, M.F., Al-Haiqi, A.: SDN in the home: a survey of home network solutions using software defined networking. Cogent Eng. 5, 1469949 (2018). https://doi.org/10.1080/23311916.2018.1469949

    Article  Google Scholar 

  26. Suresh, L., Schulz-Zander, J., Merz, R., Feldmann, A., Vazao, T.: Towards programmable enterprise WLANS with Odin. In: HotSDN’12—Proceedings of the 1st ACM International Workshop on Hot Topics in Software Defined Networks, pp. 115–120. {ACM} Press (2012)

    Google Scholar 

  27. Rangan, R.K.: Trends in SD-WAN and SDN. CSI Trans. ICT. 8, 21–27 (2020). https://doi.org/10.1007/s40012-020-00277-5

    Article  Google Scholar 

  28. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4: Experience with a globally-deployed software defined WAN. In: SIGCOMM 2013—Proceedings of the ACM SIGCOMM 2013 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, pp. 3–14. ACM (2013)

    Google Scholar 

  29. Hong, C.-Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M.: Achieving high utilization with software-driven WAN. ACM SIGCOMM (2013)

    Google Scholar 

  30. Malisuwan, S., Milindavanij, D., Kaewphanuekrungsi, W.: Quality of service (QoS) and Quality of experience (QoE) of the 4G LTE perspective. Int. J. Futur. Comput. Commun. 5, 158–162 (2016). https://doi.org/10.18178/ijfcc.2016.5.3.463

  31. Patil, P., Hakiri, A., Barve, Y., Gokhale, A.: Enabling software-defined networking for wireless mesh networks in smart environments. In: Proceedings—2016 IEEE 15th International Symposium on Network Computing and Applications, NCA 2016, pp. 153–157. Institute of Electrical and Electronics Engineers Inc (2016)

    Google Scholar 

  32. Gilani, S.S.A., Qayyum, A., Rais, R.N. Bin, Bano, M.: SDNMesh: an SDN based routing architecture for wireless mesh networks. IEEE Access 8, 136769–136781 (2020). https://doi.org/10.1109/ACCESS.2020.3011651

  33. Bradai, A., Singh, K., Ahmed, T.: Cellular software defined network-a framework

    Google Scholar 

  34. Jin, X., Li, L.E., Vanbever, L., Rexford, J.: SoftCell: Scalable and flexible cellular core network architecture. In: CoNEXT 2013—Proceedings of the 2013 ACM International Conference on Emerging Networking Experiments and Technologies. pp. 163–174. Association for Computing Machinery, New York, NY, USA (2013)

    Google Scholar 

  35. Routray, S.K., Jha, M.K., Javali, A., Sharma, L., Sarkar, S., Ninikrishna, T.: Software defined networking for optical networks. In: 2016 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics, DISCOVER 2016—Proceedings. pp. 133–137. IEEE (2016)

    Google Scholar 

  36. Al-Rubaye, S., Kadhum, E., Ni, Q., Anpalagan, A.: Industrial Internet of Things Driven by SDN Platform for Smart Grid Resiliency. IEEE Internet Things J. 6, 267–277 (2019). https://doi.org/10.1109/JIOT.2017.2734903

    Article  Google Scholar 

  37. Rehmani, M.H., Davy, A., Jennings, B., Assi, C.: Software defined networks-based smart grid communication: a comprehensive survey. IEEE Commun. Surv. Tutorials. 21, 2637–2670 (2019). https://doi.org/10.1109/COMST.2019.2908266

    Article  Google Scholar 

  38. ASSIST-IoT – H2020 ICT-56–2020. https://assist-iot.eu/

Download references

Acknowledgements

This work is part of ASSIST-IoT project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 957258.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López, C., Lacalle, I., Belsa, A., Kopertowski, Z., E.Palau, C., Esteve, M. (2022). Reviewing SDN Adoption Strategies for Next Generation Internet of Things Networks. In: Somani, A.K., Mundra, A., Doss, R., Bhattacharya, S. (eds) Smart Systems: Innovations in Computing. Smart Innovation, Systems and Technologies, vol 235. Springer, Singapore. https://doi.org/10.1007/978-981-16-2877-1_57

Download citation

Publish with us

Policies and ethics