Skip to main content

Lung Sounds Classification Using Wavelet Reconstructed Sub-bands Signal and Machine Learning

  • Conference paper
  • First Online:
Intelligent Systems and Networks (ICISN 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 243))

Included in the following conference series:

Abstract

The incidence of respiratory diseases is increasing rapidly due to environmental pollution affecting everyone around the world. Diagnosis from cardiopulmonary hearing has been made for hundreds of years. However, this method is influenced by noise and subjectivity by the doctor, which creates uncertainty and inconsistency in screening for lung disease. Numerous studies have tried to solve these problems by recording lung sounds digitally and processing them. In this article, we use a discrete Wavelet transformation to classify wheeze, crackle and normal lung sounds to reduce computation time and cost. The dataset is taken from a published database initiated by the Internal Biomedical Health Informatics Conference (ICBHI). As characteristics and machine learning models are used to learn between respiratory traits, reconstructed sub-band energies are extracted. The feasibility and efficiency of our proposed approach have been verified by our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.who.int/gard/publications/The_Global_Impact_of_Respiratory_Disease.pdf. Accessed 25 Oct 2020

  2. Palaniappan, R., Sundaraj, K., Ahamed, N.U.: Machine learning in lung sound analysis: a systematic review. In: Biocybernetics and Biomedical Engineering 2013, vol. 33, pp. 129–135 (2013)

    Google Scholar 

  3. Bohadana, A., Izbicki, G., Kraman, S.: Fundamentals of lung auscultation. New Engl. J. Med. 370, 744–751 (2014)

    Article  Google Scholar 

  4. Mendes, L., et al.: Detection of wheezes using their signature in the spectrogram space and musical features. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, pp. 5581–5584 (2015)

    Google Scholar 

  5. Serbes, G., Sakar, C.O., Kahya, Y.P., Aydin, N.: Pulmonary crackle detection using time–frequency and time–scale analysis. In: Digital Signal Processing 2013, vol. 23(3), pp. 1012–1021 (2013)

    Google Scholar 

  6. Mayorga, P., Druzgalski, C., Morelos, R.L., Gonzalez, O.H., Vidales, J.: Acoustics based assessment of respiratory diseases using GMM classification. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2010, pp. 6312–6316 (2010)

    Google Scholar 

  7. Oud, M., Dooijes, E.H., van der Zee, J.S.: Asthmatic airways obstruction assessment based on detailed analysis of respiratory sound spectra. IEEE Trans. Biomed. Eng. 47(11), 1450–1455 (2000)

    Article  Google Scholar 

  8. Rocha, B.M., et al.: α respiratory sound database for the development of automated classification. In: International Conference on Biomedical and Health Informatics 2017, pp. 33–37 (2017)

    Google Scholar 

  9. Pham, L., McLoughlin, I., Phan, H., Tran, M., Nguyen, T., Palaniappan, R.: Robust deep learning framework for predicting respiratory anomalies and diseases. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, pp. 164–167 (2020)

    Google Scholar 

  10. Ma, Y., Xu, X., Li, Y.: LungRN+NL: An improved adventitious lung sound classification using non-local block ResNet neural network with Mixup data augmentation. Interspeech 2020, 2902–2906 (2020)

    Article  Google Scholar 

  11. Yamashita, R., Nishio, M., Do, R., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9(4), 611–629 (2018)

    Article  Google Scholar 

  12. Shi, Y., Li, Y., Cai, M., Zhang, X.D.: a lung sound category recognition method based on wavelet decomposition and BP neural network. Int. J. Biol. Sci. 15(1), 195–207 (2019)

    Article  Google Scholar 

  13. Kandaswamy, A., Kumar, C.S., Ramanathan, R.P., Jayaraman, S., Malmurugan, N.: Neural classification of lung sounds using wavelet coefficients. Comput. Biol. Med. 34(6), 523–537 (2004)

    Article  Google Scholar 

  14. Ulukaya, S., Serbes, G., Kahya, Y.: Overcomplete discrete wavelet transform based respiratory sound discrimination with feature and decision level fusion. Biomed. Signal Process. Control 38, 322–336 (2017)

    Article  Google Scholar 

  15. https://www.kaggle.com/vbookshelf/respiratory-sound-database. Accessed 25 Oct 2020

  16. Bigand, E., Delbé, C., Gérard, Y., Tillmann, B.: Categorization of extremely brief auditory stimuli: domain-specific or domain-general processes? PloS One 6(10), e27024 (2011)

    Article  Google Scholar 

  17. Goodman, R.W.: Discrete Fourier and Wavelet Transforms: an Introduction Through Linear Algebra with Applications to Signal Processing. World Scientific, Singapore (2016)

    Google Scholar 

  18. Ray, S.: A quick review of machine learning algorithms. In: International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon) 2019, Faridabad, India, pp. 35–39 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huong Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, V. et al. (2021). Lung Sounds Classification Using Wavelet Reconstructed Sub-bands Signal and Machine Learning. In: Tran, DT., Jeon, G., Nguyen, T.D.L., Lu, J., Xuan, TD. (eds) Intelligent Systems and Networks . ICISN 2021. Lecture Notes in Networks and Systems, vol 243. Springer, Singapore. https://doi.org/10.1007/978-981-16-2094-2_27

Download citation

Publish with us

Policies and ethics