Skip to main content

Investigation of Analog Parameters and Miller Capacitance Affecting the Circuit Performance of Double Gate Tunnel Field Effect Transistors

  • Conference paper
  • First Online:
Intelligent Communication, Control and Devices

Abstract

TCAD Simulations for 30 nm double gate tunnel field effect transistor (DGTFET) reports steeper subthreshold swing, SS ~ 15 mV/dec, ION ~ 10–4 A/µm, and low off-state current IOFF ~ 10−15A/µm as desirable parameters for low voltage applications. The unity gain frequency (fT) increases with Vgs and maximizes at 5.2 × 1011 Hz for Vgs = Vds = 0.7 V. It is investigated that the gain-bandwidth product (GBP) also increase with Vgs and maximized at 2.63 × 1011 Hz for Vds = 0.7 V at Vgs = 0.6 V. Transconductance frequency product (TFP) increases initially with Vgs (0–0.7 V) and maximizes at 4.46 × 1011 Hz/V for Vds = 0.7 V. Higher value of Vds results in better response time of the DGTFETs, i.e., increasing Vds from 0.1 to 0.8 V, the transit time (tr) of the electron decreases from 4 to 0.1 ps resulting faster switching operation. Transient performance of DGTFETs reports that at supply voltage (VDD) = 0.7 V, increasing the load capacitance (CL, 10–200 pF) the total delay increases from 0.18 to 1.9 ns. It is also noticed that the % peak voltage overshoot (% Vp) decreases from 42.8 to 2.14% due to decrease in computed values of miller capacitance (CMIL) from 11.27 to 4.32 fF. Maintaining CL = 15 fF, increasing VDD reports significant variation in voltage peak overshoot from 35 to 26.25% and total delay also decreases from 8 to 0.2 ns for VDD = 0.1–0.8 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baravelli, E., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: TFET inverters with n-/p-devices on the same technology platform for low-voltage/low-power applications. IEEE Trans. Electron Devices 61(2), 473–478 (2014)

    Article  Google Scholar 

  2. Nikonov, D.E., Young, I.A.: Overview of beyond-CMOS devices and a uniform methodology for their benchmarking. Proc. IEEE 101(12), 2498–2533 (2013)

    Article  Google Scholar 

  3. Nikonov, D.E., Young, I.A.: Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015)

    Article  Google Scholar 

  4. Pan, C., Naeemi, A.: An expanded benchmarking of beyond-CMOS devices based on Boolean and neuromorphic representative circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 3, 101–110 (2017)

    Article  Google Scholar 

  5. Lu, H., Paletti, P., Li, W., Fay, P., Ytterdal, T., Seabaugh, A.: Tunnel FET analog benchmarking and circuit design. IEEE J. Explor. Solid-State Comput. Devices Circuits 4(1), 19–25 (2018)

    Article  Google Scholar 

  6. Guenifi, N., Rahi, S.B., Ghodbane, T.: Rigorous study of double gate tunneling field effect transistor structure based on silicon. Mater. Focus. 7(6), 866–872 (2018)

    Article  Google Scholar 

  7. Kumar, D.: Performance evaluation of double gate tunnel FET based chain of inverters and 6-T SRAM cell. Eng. Res. Express. 1(2), 025055 (2019)

    Article  Google Scholar 

  8. Chen, S., Liu, H., Wang, S., Li, W., Wang, X., Zhao, L.: Analog/RF performance of T-shape gate dual-source tunnel field-effect transistor. Nanoscale Res. Lett. 13(1), 321 (2018)

    Article  Google Scholar 

  9. Der Agopian, P.G., Martino, J.A., Vandooren, A., Rooyackers, R., Simoen, E., Thean, A., Claeys, C.: Study of line-TFET analog performance comparing with other TFET and MOSFET architectures. Solid-State Electron. 128, 43–47 (2017)

    Article  Google Scholar 

  10. Baravelli, E., Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: TFET inverters with n-/p-devices on the same technology platform for low-voltage/low-power applications. IEEE Trans. Electron Devices 61(2), 473–478 (2014)

    Google Scholar 

  11. Khatami, Y., Banerjee, K.: Steep subthreshold slope n-and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)

    Article  Google Scholar 

  12. Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26(8), 085001 (2011)

    Article  Google Scholar 

  13. Bizindavyi, J., Verhulst, A.S., Verreck, D., Sorée, B., Groeseneken, G.: Large Variation in Temperature Dependence of Band-to-Band Tunneling Current in Tunnel Devices. IEEE Electron Device Lett. 40(11), 1864–1867 (2019)

    Article  Google Scholar 

  14. Wu, P., Appenzeller, J.: Reconfigurable black phosphorus vertical tunneling field-effect transistor with record high on-currents. IEEE Electron Device Lett. 40(6), 981–984 (2019)

    Article  Google Scholar 

  15. Verhulst, A.S., Vandenberghe, W.G., Maex, K., De Gendt, S., Heyns, M.M. and Groeseneken, G.: Complementary silicon-based heterostructure tunnel-FETs with high tunnel rates. IEEE Electron Device Lett. 29(12), 398–1401 (2008)

    Google Scholar 

  16. Kim, S.W., Choi, W.Y., Sun, M.C., Kim, H.W. and Park, B.G.: Design guideline of Si-based L-shaped tunneling field-effect transistors. Jpn. J. Appl. Phys., 51(6S), 06FE09 (2012)

    Google Scholar 

  17. Mookerjea, S., Datta, S.: Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications. In: 2008 Device Research Conference, pp. 47–48. IEEE (2008)

    Google Scholar 

  18. Gandhi, R., Chen, Z., Singh, N., Banerjee, K., Lee, S.: Vertical Si-Nanowire $ n $-Type Tunneling FETs With Low Subthreshold Swing ($\leq\hbox {50}\\hbox mV/decade $) at Room Temperature. IEEE Electron Device Lett. 32(4), 437–439 (2011)

    Article  Google Scholar 

  19. Asthana, P.K., Goswami, Y., Basak, S., Rahi, S.B., Ghosh, B.: Improved performance of a junctionless tunnel field effect transistor with a Si and SiGe heterostructure for ultra low power applications. RSC Adv. 5(60), 48779–48785 (2015)

    Article  Google Scholar 

  20. Luo, Z., Wang, H., An, N., Zhu, Z.: A tunnel dielectric-based tunnel FET. IEEE Electron Device Lett. 36(9), 966–968 (2015)

    Article  Google Scholar 

  21. Rahi, S.B., Bahniman, G.: High-k Double Gate Junctionless Tunnel FET with Tunable Bandgap. RSC Adv. 5(67), 54544–54550 (2015) (Impact factor: 3.049). https://doi.org/10.1039/C5RA06954H

  22. Rahi, S.B., Asthana, P. Gupta, S.: Heterogate junctionless tunnel field-effect transistor: future of low-power devices. J. Comput. Electron. 16(1), 30–38 (2017) (Impact factor: 1.637). https://doi.org/10.1007/s10825-016-0936-9

  23. Wang, X., Tang, Z., Cao, L., Li, J., Liu, Y.: Gate Field plate structure for subthreshold swing improvement of Si line-tunneling FETs. IEEE Access 7, 100675–100683 (2019)

    Article  Google Scholar 

  24. Lu, H., Paletti, P., Li, W., Fay, P., Ytterdal, T. and Seabaugh, A.: Tunnel FET analog benchmarking and circuit design. IEEE J. Explor. Solid-State Comput. Devices Circuits 4(1), 19–25 (2018)

    Google Scholar 

  25. Strangio, S., Settino, F., Palestri, P., Lanuzza, M., Crupi, F., Esseni, D., Selmi, L.: Digital and analog TFET circuits: design and benchmark. Solid-State Electron. 146, 50–65 (2018)

    Article  Google Scholar 

  26. Kim, M.S., Liu, H., Li, X., Datta, S., Narayanan, V.: A steep-slope tunnel FET based SAR analog-to-digital converter. IEEE Trans. Electron Devices 61(11), 3661–3667 (2014)

    Article  Google Scholar 

  27. Elnaggar, M., Shaker, A., Fedawy, M.: Modified hetero-gate-dielectric TFET for improved analog and digital performance. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 683–687. IEEE (2018)

    Google Scholar 

  28. Imenabadi, R.M., Saremi, M., Vandenberghe, W.G.: A novel PNPN-like Z-shaped tunnel field-effect transistor with improved ambipolar behavior and RF performance. IEEE Trans. Electron Devices 64(11), 4752–4758 (2017)

    Article  Google Scholar 

  29. Asra, R., Shrivastava, M., Murali, K.V., Pandey, R.K., Gossner, H., Rao, V.R.: A tunnel FET for $ V_ {DD} $ scaling below 0.6 V with a CMOS-comparable performance. IEEE Trans. Electron Devicesv 58(7), 1855–1863 (2011)

    Google Scholar 

  30. Datta, S., Liu, H., Narayanan, V.: Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)

    Article  Google Scholar 

  31. Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007). https://doi.org/10.1109/LED.2007.901273

    Article  Google Scholar 

  32. Ionescu, A.M., Riel, H.: Tunnel field-effect transistor as energy-efficient electronic switches. Nature 479(7373), 329–337 (2011). https://doi.org/10.1038/nature10679

    Article  Google Scholar 

  33. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)

    Article  Google Scholar 

  34. Nirschl, T., Wang, P.F., Weber, C., Sedlmeir, J., Heinrich, R., Kakoschke, R., Schrufer, K., Holz, J., Pacha, C., Schulz, T., Ostermayr, M.: The tunneling field effect transistor (TFET) as an add-on for ultra-low-voltage analog and digital processes. In: IEDM Technical Digest. IEEE International Electron Devices Meeting, pp. 195–198. IEEE (2004)

    Google Scholar 

  35. Kumar, D., Jain, P.: Performance of dual metal-double gate tunnel field effect transistor with different dielectrics. In: Proceeding of International Conference on Intelligent Communication, Control and Devices 2017, pp. 927–933. Springer, Singapore

    Google Scholar 

  36. Mallik, A., Chattopadhyay, A.: Drain-dependence of tunnel field-effect transistor characteristics: the role of the channel. IEEE Trans. Electron Devices 58(12), 4250–4257 (2011)

    Article  Google Scholar 

  37. Xing, H.G., Zhou, G., Li, M., Lu, Y., Li, R., Wistey, M., Fay, P., Jena, D., Seabaugh, A.: Tunnel FETs with tunneling normal to the gate. In: 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S), pp. 1–1. IEEE (2013)

    Google Scholar 

  38. Sedighi, B., Hu, X.S., Liu, H., Nahas, J.J., Niemier, M.: Analog circuit design using tunnel-FETs. IEEE Trans. Circuits Syst. I Regul. Pap. 62(1), 39–48 (2014)

    Article  Google Scholar 

  39. Narang R, Saxena M, Gupta RS, Gupta M. Device and circuit level performance comparison of tunnel FET architectures and impact of heterogeneous gate dielectric. JSTS: J. Semicond. Technol. Sci. 13(3), 22436 (2013)

    Google Scholar 

  40. Saripalli, V., Datta, S., Narayanan, V., Kulkarni, J.P.: Variation-tolerant ultra low-power heterojunction tunnel FET SRAM design. In: Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, 2011 Jun 8, pp. 45–52. IEEE Computer Society (2011)

    Google Scholar 

  41. Lee, Y, Kim, D., Cai, J., Lauer, I., Chang, L., Koester, S.J., Blaauw, D., Sylvester, D.: Low-power circuit analysis and designbased on heterojunction tunneling transistors (HETTs). IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(9), 1632–1643 (2013)

    Google Scholar 

  42. Avci, U.E., Morris, D.H., Hasan, S., Kotlyar, R., Kim, R., Rios, R., Nikonov, D.E., Young, I.A.: Energy efficiency comparison of nanowire heterojunction TFET and Si MOSFET at Lg = 13nm, including P-TFET and variation considerations. In: 2013 IEEE International Electron Devices Meeting, 2013 Dec 9, pp. 33–4. IEEE (2013)

    Google Scholar 

  43. Trivedi, A.R., Carlo, S., Mukhopadhyay, S.: Exploring tunnel-FET for ultra low power analog applications: a case study on operational transconductance amplifier. In: Proceedings of the 50th Annual Design Automation Conference, 2013 May 29, p. 109. ACM (2013)

    Google Scholar 

  44. Raghav, N., Bansal, M.: Analysis of power efficient 6-T SRAM cell with performance measurements. In: 2017 International Conference on Innovations in Control, Communication and Information Systems (ICICCI), 2017 Aug 12, pp. 1–4. IEEE (2017)

    Google Scholar 

  45. Palomo, F.R., Fernández-Martínez, P., Mogollón, J.M., Hidalgo, S., Aguirre, M.A., Flores, D., López-Calle, I., de Agapito, J.A.: Simulation of femtosecond pulsed laser effects on MOS electronics using TCAD Sentaurus customized models. Int. J. Numer. Model. Electron. Networks Devices Fields 23(4–5), 379–399 (2010)

    Article  Google Scholar 

  46. Anand, S., Amin, S.I., Sarin, R.K.: Analog performance investigation of dual electrode based doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)

    Article  Google Scholar 

  47. Yang, Y., Tong, X., Yang, L.T., Guo, P.F., Fan, L., Yeo, Y.C.: Tunneling field-effect transistor: Capacitance components and modeling. IEEE Electron Device Lett. 31(7), 752–754 (2010). https://doi.org/10.1109/LED.2010.2047240

    Article  Google Scholar 

  48. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett.

    Google Scholar 

  49. Biswas, A., Dan, S.S., Le Royer, C., Grabinski, W., Ionescu, A.M.: TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Microelectron. Eng. 1(98), 334–337 (2012)

    Article  Google Scholar 

  50. Knoch J.: Optimizing tunnel FET performance-Impact of device structure, transistor dimensions and choice of material. In: 2009 International Symposium on VLSI Technology, Systems, and Applications, 2009 Apr 27, pp. 45–46. IEEE (2009)

    Google Scholar 

  51. Singh, K.S., Kumar, S., Nigam, K., Tikkiwal, V.A.: Tunnel field effect transistor for ultra low power applications: a review. In: 2019 International Conference on Signal Processing and Communication (ICSC), 2019 Mar 7, pp. 286–291. IEEE (2019)

    Google Scholar 

  52. Wang, P.Y., Tsui, B.Y.: Investigation into gate-to-source capacitance induced by highly efficient band-to-band tunneling in p-channel Ge epitaxial tunnel layer tunnel FET. IEEE Trans. Electron Devices 63(4), 1788–1790 (2016)

    Article  Google Scholar 

  53. Jain, P., Kumar, D.: Drive current boosting using pocket implant near to the strained SiGe/Si source with single-metal/dual-metal double-gate tunnel field-effect transistor. In: Proceeding of International Conference on Intelligent Communication, Control and Devices, pp. 943–950. Springer, Singapore (2017)

    Google Scholar 

  54. Kumar, D., Jain, P.: Double gate tunnel field effect transistor with extended source structure and impact ionization enhanced current. Inintell. Commun., Control. Devices, pp. 973–980. Springer, Singapore (2018)

    Google Scholar 

  55. Mookerjea, S., Krishnan, R., Datta, S., Narayanan, V.: Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)

    Article  Google Scholar 

  56. Shoji, M.: CMOS digital circuit technology. In: Englewood Cliffs, ch. 4, pp. 189–190. Prentice-Hall, NJ (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, D., Rahi, S.B., Kuchhal, P. (2021). Investigation of Analog Parameters and Miller Capacitance Affecting the Circuit Performance of Double Gate Tunnel Field Effect Transistors. In: Choudhury, S., Gowri, R., Sena Paul, B., Do, DT. (eds) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-16-1510-8_33

Download citation

Publish with us

Policies and ethics