Skip to main content

Emerging Metabolic Regulation of Redox Status in Cancer Stem Cells Progression and Metastasis

  • Living reference work entry
  • First Online:
Handbook of Oxidative Stress in Cancer: Therapeutic Aspects

Abstract

Emerging research revealed a role of energy metabolism in maintaining stemness in cancer stem cells (CSCs). In CSCs, metabolic heterogeneity provides the flexibility to deal with endogenous mitochondrial stress and exogenous milieu. In metabolism, both the normal stem cells (SCs) and CSCs have increased glycolysis. CSCs not only increase metabolic activity, i.e., predominantly glycolysis for self-renewal, but also increase the antioxidant levels, i.e., low ROS levels, which maintains the stem cell fate. However, OXPHOS is also shown to increase in CSCs of few cancers. Traditionally, persistent metabolic ROS production causes oxidative damage, which accelerates cellular mortality. Thus, redox status control is critical for cellular activities. Hitherto, it has been unclear as how CSCs maintain low ROS levels and secondly, how ROS-dependent signaling pathways contribute to CSC activity is poorly understood? We focus on ROS-dependent cellular process in CSCs that regulates various metabolic signaling pathways and transcriptional activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abdal Dayem A, Choi HY, Kim JH, Cho SG (2010) Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel)

    Google Scholar 

  • Altman BJ, Stine ZE, Dang C V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer

    Google Scholar 

  • Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen C, Yu D, Hung MC (2011) P53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. https://doi.org/10.1038/ncb2173

  • Cho KH, Choi MJ, Jeong KJ, Kim JJ, Hwang MH, Shin SC, Park CG, Lee HY (2014) A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion. Prostate. https://doi.org/10.1002/pros.22776

  • Choi YK, Park KG (2018) Targeting glutamine metabolism for cancer treatment. Biomol Ther

    Google Scholar 

  • Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, De Cola A, Scavo E, Carollo R, D’Agostino D, Forlì F, D’Aguanno S, Todaro M, Stassi G, Di Ilio C, De Laurenzi V, Urbani A (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis. https://doi.org/10.1038/cddis.2014.285

  • Cui B, Luo Y, Tian P, Peng F, Lu J, Yang Y, Su Q, Liu B, Yu J, Luo X, Yin L, Cheng W, An F, He B, Liang D, Wu S, Chu P, Song L, Liu X, Luo H, Xu J, Pan Y, Wang Y, Li D, Huang P, Yang Q, Zhang L, Zhou BP, Liu S, Xu G, Lam EWF, Kelley KW, Liu Q (2019) Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J Clin Invest. https://doi.org/10.1172/JCI121685

  • Cui X (2012) Reactive oxygen species: the achilles’ heel of Cancer cells? Antioxidants Redox Signal

    Google Scholar 

  • Cuyàs E, Corominas-Faja B, Menendez JA (2014) The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget. https://doi.org/10.18632/oncotarget.2147

  • Debeb BG, Lacerda L, Larson R, Wolfe AR, Krishnamurthy S, Reuben JM, Ueno NT, Gilcrease M, Woodward WA (2016) Histone deacetylase inhibitor-induced cancer stem cells exhibit high pentose phosphate pathway metabolism. Oncotarget. https://doi.org/10.18632/oncotarget.8631

  • Dey-Guha I, Wolfer A, Yeh AC, Albeck JG, Darp R, Leon E, Wulfkuhle J, Petricoin EF, Wittner BS, Ramaswamy S (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1109632108

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. https://doi.org/10.1038/nature07733

  • Dong C, Yuan T, Wu Y, Wang Y, Fan TWM, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP (2013) Loss of FBP1 by snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. https://doi.org/10.1016/j.ccr.2013.01.022

  • Elbadawy M, Usui T, Yamawaki H, Sasaki K (2019) Emerging roles of C-myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: a potential therapeutic target against colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20092340

  • Folmes CDL, Dzeja PP, Nelson TJ, Terzic A (2012) Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell

    Google Scholar 

  • Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. https://doi.org/10.1016/j.cmet.2011.06.011

  • Funato Y, Michiue T, Asashima M, Miki H (2006) The thioredoxin-related redox-regulating protein nucleoredoxin inhibits wnt–β-catenin signalling through dishevelled. Nat Cell Biol. https://doi.org/10.1038/ncb1405

  • Furuta E, Okuda H, Kobayashi A, Watabe K (2010) Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta – Rev Cancer

    Google Scholar 

  • Gabay M, Li Y, Felsher DW (2014) MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a014241

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV (2009) C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. https://doi.org/10.1038/nature07823

  • Gao CY, Shen F, Jin Y, Miao X, Qiu R, Moreno-Sanchez (2016) Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. PLOS ONE 11(5) e0154576. https://doi.org/10.1371/journal.pone.0154576

  • Gogvadze V, Orrenius S, Zhivotovsky B (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol

    Google Scholar 

  • Gonzalez-Menendez P, Hevia D, Alonso-Arias R, Alvarez-Artime A, Rodriguez-Garcia A, Kinet S, Gonzalez-Pola I, Taylor N, Mayo JC, Sainz RM (2018) GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. https://doi.org/10.1016/j.redox.2018.03.017

  • Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc- and thereby promotes tumor growth. Cancer Cell. https://doi.org/10.1016/j.ccr.2011.01.038

  • Jagust P, De Luxán-Delgado B, Parejo-Alonso B, Sancho P (2019) Metabolism-based therapeutic strategies targeting cancer stem cells. Front Pharmacol

    Google Scholar 

  • Janiszewska M, Suvà ML, Riggi N, Houtkooper RH, Auwerx J, Clément-Schatlo V, Radovanovic I, Rheinbay E, Provero P, Stamenkovic I (2012) Imp2 controls oxidative phosphorylation and is crucial for preserving glioblastoma cancer stem cells. Genes & Development 26(17):1926–1944. https://doi.org/10.1101/gad.188292.112

  • Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, Yang X (2011) P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat Cell Biol. https://doi.org/10.1038/ncb2172

  • Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, Sun X, Wu Y, Zhou J, Pan J (2010) Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-κB pathway and generation of reactive oxygen species. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-3950

  • Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol

    Google Scholar 

  • Korswagen HC (2006) Regulation of the Wnt/β-catenin pathway by redox signaling. Dev Cell 10(6):687–688. https://doi.org/10.1016/j.devcel.2006.05.007

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Ross DD, Nakanishi T, Bailey-Dell K, Zhou S, Mercer KE, Sarkadi B, Sorrentino BP, Schuetz JD (2004) The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. https://doi.org/10.1074/jbc.M313599200

  • Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. https://doi.org/10.1016/j.stem.2012.12.013

  • Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci

    Google Scholar 

  • Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. https://doi.org/10.1038/nm.2284

  • Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol

    Google Scholar 

  • Massihnia D, Avan A, Funel N, Maftouh M, Van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, Russo A, Leon LG, Peters GJ, Giovannetti E (2017) Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol. https://doi.org/10.1186/s13045-016-0371-1

  • Palorini R, Votta G, Balestrieri C, Monestiroli A, Olivieri S, Vento R, Chiaradonna F (2014) Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. J Cell Biochem. https://doi.org/10.1002/jcb.24671

  • Pascual G, Domínguez D, Benitah SA (2018) The contributions of cancer cell metabolism to metastasis. DMM Dis Model Mech

    Google Scholar 

  • Peng JX, Liang SY, Li L (2019) SFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1-mediated restraint of TGFβ/Smad3 signaling. Oncol Rep 41:224–234

    CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature

    Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med. https://doi.org/10.1038/nm1320

  • Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer

    Google Scholar 

  • Saretzki G, Walter T, Atkinson S, Passos JF, Bareth B, Keith WN, Stewart R, Hoare S, Stojkovic M, Armstrong L, von Zglinicki T, Lako M (2008) Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells. https://doi.org/10.1634/stemcells.2007-0628

  • Sawayama H, Ishimoto T, Sugihara H, Miyanari N, Miyamoto Y, Baba Y, Yoshida N, Baba H (2014) Clinical impact of the Warburg effect in gastrointestinal cancer (Review). Int J Oncol

    Google Scholar 

  • Schieber MS, Chandel NS (2013) ROS links glucose metabolism to breast cancer stem cell and emt phenotype. Cancer Cell

    Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer

    Google Scholar 

  • Seyfried TN, Flores RE, Poff AM, D’Agostino DP (2014) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis

    Google Scholar 

  • Shen Y-A, Chia-Yu, Wang Yi-Tao, Hsieh Yann-Jang, Chen Yau-Huei, Wei (2015) Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 14(1):86–98. https://doi.org/10.4161/15384101.2014.974419

  • Shi X, Zhang Y, Zheng J, Pan J (2012) Reactive oxygen species in cancer stem cells. Antioxidants Redox Signal

    Google Scholar 

  • Shibuya K, Okada M, Suzuki S, Seino M, Seino S, Takeda H, Kitanaka C (2015) Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget. https://doi.org/10.18632/oncotarget.2892

  • Song K, Kwon H, Han C, Zhang J, Dash S, Lim K, Wu T (2015) Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget. https://doi.org/10.18632/oncotarget.5812

  • Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell

    Google Scholar 

  • Wanka C, Brucker DP, Bähr O, Ronellenfitsch M, Weller M, Steinbach JP, Rieger J (2012) Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. Oncogene. https://doi.org/10.1038/onc.2011.530

  • Warburg O (1956) On the origin of cancer cells. Science 80. https://doi.org/10.1126/science.123.3191.309

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol. https://doi.org/10.1085/jgp.8.6.519

  • Wong TL, Che N, Ma S (2017) Reprogramming of central carbon metabolism in cancer stem cells. Biochim Biophys Acta – Mol Basis Dis

    Google Scholar 

  • Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24- or low breast cancer cells is mediated through the enhanced activation of ATM signaling. PLoS One. https://doi.org/10.1371/journal.pone.0024080

  • Yoshida GJ, Saya H (2014) Inversed relationship between CD44 variant and c-Myc due to oxidative stress-induced canonical Wnt activation. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2013.12.016

  • Zhang H, Wang P, Lu MZ, Zhang SD, Zheng L (2019) c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett. https://doi.org/10.3892/ol.2019.10081

  • Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. https://doi.org/10.1038/srep03793

  • Zheng J (2012) Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett

    Google Scholar 

Download references

Acknowledgments

This work was supported by DST-SERB funding, Ministry of Science and Technology, India. DM is supported by ACTREC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev K. Waghmare .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mehta, D., Waghmare, S.K. (2022). Emerging Metabolic Regulation of Redox Status in Cancer Stem Cells Progression and Metastasis. In: Chakraborti, S. (eds) Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Springer, Singapore. https://doi.org/10.1007/978-981-16-1247-3_112-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1247-3_112-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1247-3

  • Online ISBN: 978-981-16-1247-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics