Skip to main content

An Integrated Approach of Conventional and Deep Learning Method for Underwater Image Enhancement

  • Conference paper
  • First Online:
Soft Computing for Intelligent Systems

Part of the book series: Algorithms for Intelligent Systems ((AIS))

Abstract

Underwater imaging has proved its significance in underwater environment monitoring, inspection and providing security. For underwater imaging, large amount of data need to be exchanged between underwater sensors and terrestrial-monitoring device. Sensors deployed underwater for a long time must face the difficulty of having their battery recharged. Underwater images are affected by several underwater environmental factors such as water turbidity, light scattering, light absorption and light reflection. There are many conventional and deep learning techniques that help to compress underwater images for fast transmission. The conventional methods are affected by ‘blocking’ and ‘contouring’ artifacts and require complex computations. The deep learning methods need large dataset for training purpose. To overcome the drawbacks of the existing techniques, this paper proposed a method that provides an energy efficient, free learning convolutional neural compression—decompression network with a pre-processing step. The advantage of the proposed method is that the compression framework is solely dependent on untrained convolutional neural network structure and the pre-processed image. Experiments on three different datasets having different image characteristics accomplish the motive of the proposed method. The datasets considered for comparison are Fish dataset, USR-248 dataset and UIEB dataset. Findings of the study show that the proposed method provides better PSNR results for Fish dataset and USR-248 dataset but lower PSNR values for UIEB dataset when compared with SRCNN and Bi-cubic methods. But on visual examination, color and contrast correction in UIEB dataset using proposed method are better than SRCNN and Bi-cubic methods. This study enables researchers and practitioners to get refined reconstructed image at the receiver side by adopting the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Magadza TBHT, Ramanaiah OBV (2015) VSP: Video streaming protocol for underwater sensor network. In: 2015 4th international conference on reliability, infocom technologies and optimization (ICRITO) (Trends and future directions). IEEE, pp 1–6

    Google Scholar 

  2. Han S, Chen R, Noh Y, Gerla M (2014) Real-time video streaming from mobile underwater sensors In: Proceedings of the international conference on underwater networks & systems, pp 1–8

    Google Scholar 

  3. Zhao X, Jin T, Qu S (2015) Deriving inherent optical properties from background color and underwater image enhancement. Ocean Eng 94:163–172

    Article  Google Scholar 

  4. He K, Sun J, Tang X (2010) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Google Scholar 

  5. Chiang JY, Chen YC (2011) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769

    Article  MathSciNet  Google Scholar 

  6. Iqbal K, Salam RA, Osman A, Talib AZ (2007) Underwater image enhancement using an integrated colour model. IAENG Int J Comput Sci 34(2)

    Google Scholar 

  7. Iqbal K, Odetayo M, James A, Salam RA, Talib AZH (2010) Enhancing the low quality images using unsupervised colour correction method. In: 2010 ieee international conference on systems, man and cybernetics. IEEE, pp 1703–1709

    Google Scholar 

  8. Ghani ASA, Isa NAM (2015) Underwater image quality enhancement through integrated color model with Rayleigh distribution. Appl Soft Comput 27:219–230

    Article  Google Scholar 

  9. Pennebaker WB, Mitchell JL (1992) JPEG: still image data compression standard. Springer Science & Business Media

    Google Scholar 

  10. Rabbani M (2002) JPEG2000: Image compression fundamentals, standards and practice. J Electron Imaging 11(2):286

    Article  Google Scholar 

  11. Al Muhit A, Islam MS, Othman M (2004) VLSI implementation of discrete wavelet transform (DWT) for image compression. In: 2nd international conference on autonomous robots and agents, vol 4(4), pp 421–433

    Google Scholar 

  12. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  Google Scholar 

  13. Said A, Pearlman WA (1996) A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250

    Article  Google Scholar 

  14. Tian J, Wells Jr RO (1996) A lossy image codec based on index coding. In: Data compression conference, p 456

    Google Scholar 

  15. Yuan Y, Mandal MK (2004) Embedded color image coding using context-modeled wavelet difference reduction. In: 2004 IEEE international conference on acoustics, speech, and signal processing, vol 3. IEEE, pp iii–61. https://doi.org/10.1109/ICASSP.2004.1326481

  16. Karri C, Jena U (2016) Fast vector quantization using a Bat algorithm for image compression. Eng Sci Technol Int J 19(2):769–781

    Google Scholar 

  17. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95

    Article  Google Scholar 

  18. Tsekouras GE, Tsolakis DM (2013) Fuzzy clustering-based vector quantization for image compression. In: Computational intelligence in image processing). Springer, Berlin, Heidelberg, pp 93–105

    Google Scholar 

  19. Patané G, Russo M (2001) The enhanced LBG algorithm. Neural Netw 14(9):1219–1237

    Article  Google Scholar 

  20. Kumar M, Kapoor R, Goel T (2010) Vector quantization based on self-adaptive particle swarm optimization. Int J Nonlinear Sci 9(3):311–319

    MATH  Google Scholar 

  21. Feng HM, Chen CY, Ye F (2007) Evolutionary fuzzy particle swarm optimization vector quantization learning scheme in image compression. Expert Syst Appl 32(1):213–222

    Article  Google Scholar 

  22. Wang Y, Feng XY, Huang YX, Pu DB, Zhou WG, Liang YC, Zhou CG (2007) A novel quantum swarm evolutionary algorithm and its applications. Neurocomputing 70(4–6):633–640

    Article  Google Scholar 

  23. Horng MH, Jiang TW (2011) Image vector quantization algorithm via honey bee mating optimization. Expert Syst Appl 38(3):1382–1392

    Article  Google Scholar 

  24. Toderici G, O’Malley SM, Hwang SJ, Vincent D, Minnen D et al. (2015). Variable rate image compression with recurrent neural networks. arXiv preprint arXiv:1511.06085

  25. Theis L, Shi W, Cunningham A, Huszár F (2017) Lossy image compression with compressive autoencoders. arXiv preprint arXiv:1703.00395

  26. Ballé J, Laparra V, Simoncelli EP (2016) End-to-end optimized image compression. arXiv preprint arXiv:1611.01704

  27. Li M, Zuo W, Gu S, Zhao D, Zhang D (2018) Learning convolutional networks for content-weighted image compression. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3214–3223

    Google Scholar 

  28. Jiang F, Tao W, Liu S, Ren J, Guo X, Zhao D (2017) An end-to-end compression framework based on convolutional neural networks. IEEE Trans Circuits Syst Video Technol 28(10):3007–3018

    Article  Google Scholar 

  29. Choi Y, El-Khamy M, Lee J (2019) Variable rate deep image compression with a conditional autoencoder. In: Proceedings of the IEEE international conference on computer vision, pp 3146–3154

    Google Scholar 

  30. Zhou L, Cai C, Gao Y, Su S, Wu J (2018) Variational autoencoder for low bit-rate image compression. In: CVPR Workshops, pp 2617–2620

    Google Scholar 

  31. Liu H, Zhang Y, Zhang H, Fan C, Kwong S, Kuo CCJ, Fan X (2019) Deep learning-based picture-wise just noticeable distortion prediction model for image compression. IEEE Trans Image Process 29:641–656

    Article  MathSciNet  Google Scholar 

  32. Patel Y, Appalaraju S, Manmatha R (2019) Deep perceptual compression. arXiv preprint arXiv:1907.08310

  33. Liu Z, Liu T, Wen W, Jiang L, Xu J, Wang Y, Quan G (2018). DeepN-JPEG: a deep neural network favorable JPEG-based image compression framework. In: Proceedings of the 55th annual design automation conference, pp 1–6

    Google Scholar 

  34. Hussain F, Jeong J (2016) Efficient deep neural network for digital image compression employing rectified linear neurons. J Sensors

    Google Scholar 

  35. Carrato SERGIO, Marsi STEFANO (1992) Parallel structure based on neural networks for image compression. Electron Lett 28(12):1152–1153

    Article  Google Scholar 

  36. Benbenisti Y, Kornreich D, Mitchell HB, Schaefer PA (1999) Fixed bit-rate image compression using a parallel-structure multilayer neural network. IEEE Trans Neural Networks 10(5):1166–1172

    Article  Google Scholar 

  37. Agustsson E, Tschannen M, Mentzer F, Timofte R, Gool LV (2019) Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE international conference on computer vision, pp 221–231

    Google Scholar 

  38. Alparslan E, Fuatince M (1981) Image enhancement by local histogram stretching. ITSMC 11:376–385

    Google Scholar 

  39. Kim JH, Jang WD, Sim JY, Kim CS (2013) Optimized contrast enhancement for real-time image and video dehazing. J Vis Commun Image Represent 24(3):410–425

    Article  Google Scholar 

  40. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th international conference on computer vision). (IEEE, pp 2201–2208)

    Google Scholar 

  41. Choudhury P, Tumblin J (2005) The trilateral filter for high contrast images and meshes. In: ACM SIGGRAPH 2005 Courses, pp 5-es

    Google Scholar 

  42. Gu K, Zhai G, Wang S, Liu M, Zhoi J, Lin W (2015) A general histogram modification framework for efficient contrast enhancement. In: 2015 IEEE international symposium on circuits and systems (ISCAS). IEEE, pp 2816–2819

    Google Scholar 

  43. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  Google Scholar 

  44. Pal NS, Lal S, Shinghal K (2019) A robust framework for visibility enhancement of foggy images. Eng Sci Technol Int J 22(1):22–32

    Google Scholar 

  45. Kim YT, Bi CEUBP (1997) Histogram equalization . IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  46. Singh N, Kaur L, Singh K (2019) Histogram equalization techniques for enhancement of low radiance retinal images for early detection of diabetic retinopathy. Eng Sci Technol Int J 22(3):736–745

    MathSciNet  Google Scholar 

  47. Kim YT (1997) Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans Consum Electron 43(1):1–8

    Article  Google Scholar 

  48. Chen SD, Ramli AR (2003) Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans Consum Electron 49(4):1310–1319

    Article  Google Scholar 

  49. Wang Y, Zhang J, Cao Y, Wang Z (2017). A deep CNN method for underwater image enhancement. In: 2017 IEEE international conference on image processing (ICIP). IEEE, pp 1382–1386

    Google Scholar 

  50. Anwar S, Li C, Porikli F (2018) Deep underwater image enhancement. arXiv preprint arXiv:1807.03528

  51. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680

    Google Scholar 

  52. Li J, Skinner KA, Eustice RM, Johnson-Roberson M (2017) WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Rob Automat Lett 3(1):387–394

    Google Scholar 

  53. Fabbri C, Islam MJ, Sattar J (2018) Enhancing underwater imagery using generative adversarial networks. In: 2018 IEEE international conference on robotics and automation (ICRA)). IEEE, pp 7159–7165

    Google Scholar 

  54. Ding X, Wang Y, Zhang J, Fu X (2017) Underwater image dehaze using scene depth estimation with adaptive color correction. In: OCEANS 2017-Aberdeen. IEEE, pp 1–5

    Google Scholar 

  55. Cao K, Peng YT, Cosman PC (2018) Underwater image restoration using deep networks to estimate background light and scene depth. In: 2018 IEEE southwest symposium on image analysis and interpretation (SSIAI). IEEE, pp 1–4

    Google Scholar 

  56. Li C, Guo C, Guo J, Han P, Fu H, Cong R (2019) PDR-Net: Perception-inspired single image dehazing network with refinement. IEEE Trans Multimedia 22(3):704–716

    Article  Google Scholar 

  57. Chambah M, Semani D, Renouf A, Courtellemont P, Rizzi A (2003) Underwater color constancy: enhancement of automatic live fish recognition. In: Color Imaging IX: processing, hardcopy, and applications, vol. 5293. International Society for Optics and Photonics, pp 157–168

    Google Scholar 

  58. Hore A, Ziou D (2010) Image quality metrics: PSNR vs. SSIM. In: 2010 20th international conference on pattern recognition. IEEE, pp 2366–2369

    Google Scholar 

  59. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  60. Fisher RB, Chen-Burger YH, Giordano D, Hardman L, Lin FP (eds) (2016) Fish4Knowledge: collecting and analyzing massive coral reef fish video data, vol 104. Springer

    Google Scholar 

  61. Li C, Guo C, Ren W, Cong R, Hou J, Kwong S, Tao D (2019) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389

    Article  Google Scholar 

  62. Islam MJ, Enan SS, Luo P, Sattar J (2019) Underwater image super-resolution using deep residual multipliers. arXiv preprint arXiv:1909.09437

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

See Tables 4, 5 and 6.

Table 4 Comparison of result for Fish-dataset with SRCNN and Bi-cubic methods
Table 5 Comparison of result for USR-248 dataset with SRCNN and Bi-cubic methods
Table 6 Comparison of results for UIEB dataset with SRCNN and Bi-cubic methods

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nair, R.S., Agrawal, R. (2021). An Integrated Approach of Conventional and Deep Learning Method for Underwater Image Enhancement. In: Marriwala, N., Tripathi, C.C., Jain, S., Mathapathi, S. (eds) Soft Computing for Intelligent Systems. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-16-1048-6_14

Download citation

Publish with us

Policies and ethics