Skip to main content

Probability of Loan Default—Applying Data Analytics to Financial Credit Risk Prediction

  • Conference paper
  • First Online:
Intelligent Systems, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1353))

  • 505 Accesses

Abstract

In the banking industry, one of the important issues is how to establish credit worthiness of potential clients. With the possibility of collecting digital records of results of past credit applications (of all clients), it can be stipulated that machine learning techniques can be used in “credit decision support” systems. There exists a substantial body of literature devoted to this subject. Moreover, benchmark datasets have been proposed, to establish effectiveness of proposed credit risk assessment approaches. The aim of this work is to compare performance of seven different classifiers, applied to two different benchmark datasets. Moreover, capabilities of, recently introduced, methods for combining results from multiple classifiers, into a meta-classifier, will be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.

  2. 2.

    https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html?highlight=svm#sklearn.svm.LinearSVC.

  3. 3.

    https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.

  4. 4.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html?highlight=random%20forest#sklearn.ensemble.RandomForestClassifier.

  5. 5.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier.

  6. 6.

    https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html?highlight=adaboost#sklearn.ensemble.AdaBoostClassifier.

  7. 7.

    https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn.

  8. 8.

    https://www.openml.org/d/260.

  9. 9.

    https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-training.csv.

  10. 10.

    https://github.com/hyperopt/hyperopt.

  11. 11.

    good—debtors not delayed in repayment.

  12. 12.

    bad—debtors delayed in repayment.

References

  1. M. Machowiak, Personal communication

    Google Scholar 

  2. M. Paprzycki, M. Machowiak, Development of e-banking in poland, pp. 1–8 (2000)

    Google Scholar 

  3. Raport Kredyt Trendy, pp. 1–45 (2019)

    Google Scholar 

  4. N. Chen, B. Ribeiro, A. Chen, Financial credit risk assessment: a recent review. Artif. Intell. Rev. 45 (2015)

    Google Scholar 

  5. E.I. Altman, Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Fin. pp. 589–609 (1968)

    Google Scholar 

  6. J.C. Wiginton, A note on the comparison of logit and discriminant models of consumer credit behavior. J. Fin. Quant. Anal. pp. 757–770 (1980)

    Google Scholar 

  7. R. Florez, J. Ramon, Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal. Expert Syst. Appl. 42 (2015)

    Google Scholar 

  8. P. Wysiński, The use of credit scoring in credit risk management. Int. Bus. Global Econ. pp. 253–268 (2013)

    Google Scholar 

  9. L. Thomas, R. Oliver, D. Hand, A survey of the issues in consumer credit modelling research. J. Oper. Res. Soc. 56, 1006–1015 (2005)

    Article  Google Scholar 

  10. A. Hanic, E. Žunić Dželihodžić, A. Dzelihodzic, Scoring models of bank credit policy management. Econ. Anal. 46, 12–27 (2013)

    Google Scholar 

  11. J. Abellán, F. Castellano, A comparative study on base classifiers in ensemble methods for credit scoring. Expert Syst. Appl. 73 (2016)

    Google Scholar 

  12. M. Alaraj, M. Abbod, Classifiers consensus system approach for credit scoring. Knowl.-Based Syst. 104 (2016)

    Google Scholar 

  13. A. Bequé, S. Lessmann, Extreme learning machines for credit scoring: an empirical evaluation. Expert Syst. Appl. 86 (2017)

    Google Scholar 

  14. S.H. Shashi Dahiya, N. Singh, A feature selection enabled hybrid-bagging algorithm for credit risk evaluation. Expert Syst. 34(6) (2017)

    Google Scholar 

  15. Y. Xia, C. Liu, B. Da, F. Xie, A novel heterogeneous ensemble credit scoring model based on bstacking approach. Expert Syst. Appl. 93 (2017)

    Google Scholar 

  16. A. Ben-David, E. Frank, Accuracy of machine learning models versus “hand crafted” expert systems–a credit scoring case study. Expert Syst. Appl. 36, 5264–5271 (2009)

    Article  Google Scholar 

  17. S. Sohn, D.-H. Kim, J. Yoon, Technology credit scoring model with fuzzy logistic regression. Appl. Soft Comput. 43, 150–158 (2016)

    Article  Google Scholar 

  18. B. Twala, Multiple classifier application to credit risk assessment. Expert Syst. Appl. 37, 3326–3336 (2010)

    Article  Google Scholar 

  19. M. Alaraj, M. Abbod, A systematic credit scoring model based on heterogeneous classifier ensembles (2015)

    Google Scholar 

  20. M. Alaraj, M. Abbod, A new hybrid ensemble credit scoring model based on classifiers consensus system approach. Expert Syst. Appl. 64 (2016)

    Google Scholar 

  21. L. Cleofas, V. García, A. Marqués, J. Sánchez, Financial distress prediction using the hybrid associative memory with translation. Appl. Soft Comput. 44, 144–152 (2016)

    Article  Google Scholar 

  22. S. Lessmann, B. Baesens, H.-V. Seow, L. Thomas, Benchmarking state-of-the-art classification algorithms for credit scoring: an update of research. Euro. J. Oper. Res. (2015). https://doi.org/10.1016/j.ejor.2015.05.030

  23. G. Wang, J. Ma, L. Huang, K. Xu, Two credit scoring models based on dual strategy ensemble trees. Knowl.-Based Syst. 26, 61–68 (2012)

    Google Scholar 

  24. A. Hernik, J. Balicki, Metodyka porównania algorytmów klasyfikacji z pomoca benchmarków do oceny wiarygodności kredytowej (2018)

    Google Scholar 

  25. B. Wang, Y. Kong, Y. Zhang, D. Liu, L. Ning, Integration of unsupervised and supervised machine learning algorithms for credit risk assessment. Expert Syst. Appl. 128 (2019)

    Google Scholar 

  26. T.M. Cover, P.E. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967)

    Article  Google Scholar 

  27. W. Henley, D.J. Hand, A k-nearest-neighbour classifier for assessing consumer credit risk (1996)

    Google Scholar 

  28. C. Cortes, V. Vapnik, Support vector machine. Mach. Learn. pp. 1303–1308 (1995)

    Google Scholar 

  29. L. Breiman, Some infinity theory for predictor ensembles. Technical Report 577 (2000)

    Google Scholar 

  30. L. Breiman, Consistency for a simple model of random forest. Technical Report 670 (2004)

    Google Scholar 

  31. R.E. Schapire, K. Yoav Freund, Boosting: foundations and algorithms. Kybernetes 42, 164–166 (2013)

    Google Scholar 

  32. J.H. Friedman, Greedy function approximation: a gradient boosting machine. IMS 1999 Reitz Lectures (1999)

    Google Scholar 

  33. Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting. Comput. Syst. Sci. pp. 119–139 (1996)

    Google Scholar 

  34. J. Friedman, Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  35. A. Byczynska, M. Ganzha, M. Paprzycki, M. Kutka, Evidence quality estimation using selected machine learning approaches, pp. 1–8 (2020)

    Google Scholar 

  36. M. Ganzha, M. Paprzycki, S. Jakub, Combining information from multiple search engines–preliminary comparison. Inform. Sci. 180, 1908–1923 (2010)

    Article  Google Scholar 

  37. M. Bourel, C. Crisci, A. Martínez, Consensus methods based on machine learning techniques for marine phytoplankton presence-absence prediction. Ecol. Inform. 42 (2017)

    Google Scholar 

  38. J. Bergstra, D. Yamins, D.D. Cox, Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Paprzycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Łuczak, A., Ganzha, M., Paprzycki, M. (2021). Probability of Loan Default—Applying Data Analytics to Financial Credit Risk Prediction. In: Paprzycki, M., Thampi, S.M., Mitra, S., Trajkovic, L., El-Alfy, ES.M. (eds) Intelligent Systems, Technologies and Applications. Advances in Intelligent Systems and Computing, vol 1353. Springer, Singapore. https://doi.org/10.1007/978-981-16-0730-1_1

Download citation

Publish with us

Policies and ethics