Skip to main content

Cancer Tissue Segmentation in Various Conditions with Semiautomatic and Automatic Approach

  • Chapter
  • First Online:
Advanced Prognostic Predictive Modelling in Healthcare Data Analytics

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 64))

  • 315 Accesses

Abstract

Medical image segmentation is an essential and complex task due to the complexity of images obtained from different modalities. The basic methods used for segmentation are discussed in this chapter. For semiautomatic approaches, human intervention is needed as guidance of initial points. Fully automatic methods do not require the prior information for the segmentation process. The researcher used various machine learning algorithms to make the segmentation process automatic or semiautomatic. But the single method is insufficient to segment the medical images; hence, multiple algorithms with modification in original algorithms have been proposed by the researchers. These methods surely have been given more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzalez RC, Woods RE (2002) Digital Image Processing. Prentice-Hall, Upper Saddle River

    Google Scholar 

  2. Canny J (1986) A computational approach to edge detection. In: IEEE transactions on pattern analysis and machine intelligence, vol PAMI-8, No 6, pp 679–698

    Google Scholar 

  3. Duda RO, Hart PE (1972) Use of the hough transformation to detect lines and curves in pictures (PDF). Comm ACM 15:11–15

    Article  Google Scholar 

  4. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Sys Man Cyber 9(1):62–66

    Article  MathSciNet  Google Scholar 

  5. Jain AK (2015) Fundamentals and digital image processing. Prentice-Hall of India Private Ltd.

    Google Scholar 

  6. Szabό Z, Kapás Z, Lefkovits L, Győrfi A, Szilágyi SM, Szilágyi L (2018) Automatic segmentation of low-grade brain tumor using a random forest classifier and Gabor features. In: 14th international conference on natural computation, fuzzy systems and knowledge discovery (ICNC-FSKD 2018). IEEE press, pp 1106–1113

    Google Scholar 

  7. Tustison NJ, Shrinidhi KL, Wintermark M et al (2015) Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 13(2):209–225

    Article  Google Scholar 

  8. Kodym O, Španel M (2018) Semi-automatic CT image segmentation using random forests learned from partial annotations. In: Proceedings of the 11th international joint conference on biomedical engineering systems and technologies (BIOSTEC 2018)—volume 2, BIOIMAGING, pp 124–131

    Google Scholar 

  9. Sinop AK, Grady L (2007) A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In: IEEE 11th international conference on computer vision, Rio de Janeiro, pp 1–8

    Google Scholar 

  10. Hu Y, Wang J, Ai X, Zhuang X (2019) An improved multithreshold segmentation algorithm based on graph cuts applicable for irregular image. Math Probl Eng 2019:25

    Google Scholar 

  11. Wei J, Xiang D, Zhang B, Wang L, Kopriva I, Chen X (2015) Random walk and graph cut for co-segmentation of lung tumor on PET-CT images. In: IEEE transactions on image processing, vol 24, no 12, pp 5854–5867

    Google Scholar 

  12. Zheng S-W, Liu J, Liu C-C (2013) A random-walk based breast tumors segmentation algorithm for mammograms. Int J Comput Consum Control (IJ3C), 2(2):66–74

    Google Scholar 

  13. Kanas V, Zacharaki E, Dermatas E, Bezerianos A, Sgarbas K, Davatzikos C (2012) Combining outlier detection with random walker for automatic brain tumor segmentation. In: Iliadis L, Maglogiannis I, Papadopoulos H, Karatzas K, Sioutas S (eds) Artificial intelligence applications and innovations. AIAI 2012. IFIP advances in information and communication technology, vol 382. Springer, Berlin

    Google Scholar 

  14. Dong C, Zeng X, Lin L, Hu H, Han X, Naghedolfeizi M, Aberra D, Chen Y-W (2017) An improved random walker with Bayes model for volumetric medical image segmentation. J. Healthc Eng 2017:11

    Google Scholar 

  15. Urbán S, Tanács A (2017) Atlas-based global and local RF segmentation of head and neck organs on multimodal MRI images. In: Proceedings of the 10th international symposium on image and signal processing and analysis, pp 99–103

    Google Scholar 

  16. Jean-François D, Blumhofer A (2013) Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation. Radiat Oncol 8(154):11

    Google Scholar 

  17. Hoang Duc AK, Eminowicz G, Mendes R et al (2015) Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Med Phys 42:5027–5034

    Google Scholar 

  18. Fortunati V, Verhaart RF, Niessen WJ, Veenland JF, Paulides MM, van Walsum T (2015) Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning. Phys Med Biol 60(16):6547–6562

    Google Scholar 

  19. Yu H, Caldwell C, Mah K et al.: Automated radiation targeting in head-and-neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys 75(2):618–625

    Google Scholar 

  20. Fooladivanda A, Shokouhi SB, Ahmadinejad N (2017) Breast-region segmentation in MRI using chest region atlas and SVM. Turk J Electr Eng Comput Sci 25:4575–4592

    Article  Google Scholar 

  21. Deng W, Luo L, Lin X, Fang T, Liu D, Dan G, Chen H (2017) Head and neck cancer tumor segmentation using support vector machine in dynamic contrast-enhanced MRI. Hindawi Contrast Media Mol Imaging 2017, Article ID 8612519:5

    Google Scholar 

  22. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. In: Fichtinger G, Martel A, Peters T (eds) Medical image computing and computer-assisted intervention—MICCAI 2011. Lecture notes in computer science, vol 6893. Springer, Berlin

    Google Scholar 

  23. Yang Xiaofeng, Ning Wu, Cheng Guanghui, Zhou Zhengyang, Yu David S, Beitler Jonathan J, Curran Walter J, Liu Tian (2014) Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Int J Radiat Oncol Biol Phys 90(5):1225–1233

    Article  Google Scholar 

  24. Frangi AF et al (2001) Bone tumor segmentation from MR perfusion images with neural networks using multi-scale pharmacokinetic features. Image Vis Comput 19(9–10):679–690

    Article  Google Scholar 

  25. Le T-N, Bao PT, Huynh HT (2016) Liver tumor segmentation from MR images using 3D fast marching algorithm and single hidden layer feedforward neural network. Biomed Res Int 2016:1–8

    Google Scholar 

  26. Mahbod A, Chowdhury M, Smedby Ö, Wang C (2018) Automatic brain segmentation using artificial neural networks with shape context. Pattern Recogn Lett 101:74–79

    Google Scholar 

  27. Vaidhya K, Thirunavukkarasu S, Alex V, Krishnamurthi G (2016) In: Crimi A et al (eds) Multi-modal brain tumor segmentation using stacked denoising autoencoders: BrainLes 2015. LNCS 9556. Springer International Publishing, Switzerland, pp 181–194

    Google Scholar 

  28. Selvakumar J, Lakshmi A, Arivoli T (2012) Brain tumor segmentation and its area calculation in brain MR images using K-mean clustering and fuzzy C-mean algorithm. In: IEEE-international conference on advances in engineering, science and management, ICAESM-2012, pp 186–190

    Google Scholar 

  29. Gupta L, Sortrakul T (1998) A Gaussian-mixture-based image segmentation algorithm. Pattern Recogn 31(3):315–325

    Article  Google Scholar 

  30. Yang J, Beadle BM, Garden AS, Schwartz Michalis DL (2015) Aristophanous: a multimodality segmentation framework for automatic target delineation in head and neck radiotherapy, Med Phys 42(9):5310–5320

    Google Scholar 

  31. Held K, Kops ER, Krause BJ, Wells WM, III, Kikinis R, Müller-Gärtner H-W (1997) Markov Random field segmentation of brain MR images. In: IEEE transactions on medical imaging, vol 16, No 6, pp 878–886

    Google Scholar 

  32. Zhang Y, Brady M, Smith S (2015) Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20(1):45–57

    Article  Google Scholar 

  33. Zhang L, Ma W, Shen X et al (2017) Research on the lesion segmentation of breast tumor MR images based on FCM-DS theory. In: AIP conference proceedings 1816, 080009 1–5

    Google Scholar 

  34. Onoma DP, Ruan S, Gardin I, Monnehan GA, Modzelewski R, Vera P (2012) 3D random walk based segmentation for lung tumor delineation in PET imaging. In: Proceedings of the international symptoms biomedical imaging, pp 1260–1263

    Google Scholar 

  35. Vishnuvarthanan G, Rajasekaran MP, Vishnuvarthanan NA, Prasath TA, Kannan M (2017) Tumor detection in T1, T2, FLAIR and MPR brain images using a combination of optimization and fuzzy clustering improved by seed-based region growing algorithm. Int J Imaging Syst Technol 27(1):33–45

    Article  Google Scholar 

  36. CS231n convolutional neural networks for visual recognition course website https://cs231n.github.io/convolutional-networks/ referred on 27/07/2020

  37. Lustberg T et al (2018) Clinical evaluation of atlas and deep learning-based automatic contouring for lung cancer. Radiother Oncol J 126(2):312–317

    Article  Google Scholar 

  38. Pereira S, Pinto A, Alves V, Silva C (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35(5):1240–1251

    Article  Google Scholar 

  39. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Lecture notes on computer science (including Subser. Lecture notes on artificial intelligence. Lecture notes on bioinformatics), vol 9351, pp 234–241

    Google Scholar 

  40. Nikolov S et al, Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy, arXiv:1809.04430 [cs.CV]

  41. Ma Z, Xi W, Song Q, Luo Y, Wang Y, Zhou J (2018) Automated nasopharyngeal carcinoma segmentation in magnetic resonance images by combination of convolutional neural networks and graph cut. Exp Ther Med 16:2511–2521

    Google Scholar 

  42. Anneke M et al (2018) Automatic high resolution segmentation of the prostate from multi-planar MRI. In: IEEE international symposium on biomedical imaging, At Washington, D.C., USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujwala Gaikwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaikwad, U., Shah, K. (2021). Cancer Tissue Segmentation in Various Conditions with Semiautomatic and Automatic Approach. In: Roy, S., Goyal, L.M., Mittal, M. (eds) Advanced Prognostic Predictive Modelling in Healthcare Data Analytics. Lecture Notes on Data Engineering and Communications Technologies, vol 64. Springer, Singapore. https://doi.org/10.1007/978-981-16-0538-3_8

Download citation

Publish with us

Policies and ethics