Skip to main content

Nuclear Density Functional Theory (DFT)

  • Living reference work entry
  • First Online:
Handbook of Nuclear Physics
  • 191 Accesses

Abstract

The present chapter is devoted to explaining the basics of nuclear Density Functional Theory (DFT). At the start, a reminder is provided of some of the many empirical pieces of evidence that point to the fact that a description of the atomic nucleus in terms of independent particles is a reasonable approximation. Accordingly, Hartree-Fock (HF) has been one of the most widely used methods throughout the second half of the last century. However, HF has been successful (mainly) in connection with density-dependent Hamiltonians; then, at a given point, it has been concluded that this is a mere realization of DFT in nuclear physics, as explained in the text. The chapter also focuses on recent developments that include avoiding underlying Hamiltonians and building functionals with diverse densities, implementing new symmetry-breaking formulations, or improving the pairing sector. DFT for Coulomb systems will be used as a paradigm: similarities and differences will be pointed out. The chapter deals only with nonrelativistic DFT and single-reference implementations, as other topics will be covered in other chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • A.V. Afanasjev, S.E. Agbemava, D. Ray, P. Ring, Nuclear landscape in covariant density functional theory. Phys. Lett. B 726(4), 680–684 (2013)

    Article  ADS  Google Scholar 

  • N. Barnea, Density functional theory for self-bound systems. Phys. Rev. C 76, 067302 (2007)

    Article  ADS  Google Scholar 

  • A.D. Becke, Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140(18), 18–301 (2014)

    Article  Google Scholar 

  • P. Becker, D. Davesne, J. Meyer, A. Pastore, J. Navarro, Tools for incorporating a d-wave contribution in Skyrme energy density functionals. J. Phys. G: Nucl. Part. Phys. 42(3), 034001 (2015)

    Google Scholar 

  • J.S. Bell, T.H.R. Skyrme, CVIII. The nuclear spin-orbit coupling. Philos. Mag.: J. Theor. Exp. Appl. Phys. 1(11), 1055–1068 (1956)

    Google Scholar 

  • M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75, 121–180 (2003)

    Article  ADS  Google Scholar 

  • J.F. Berger, M. Girod, D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63(1), 365 (1991)

    Google Scholar 

  • G.F. Bertsch, H. Esbensen, Pair correlations near the neutron drip line. Ann. Phys. 209(2), 327–363 (1991)

    Article  ADS  Google Scholar 

  • J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (The MIT Press, Cambdridge/London, 1986)

    Google Scholar 

  • A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Benjamin, New York/Amsterdam, 1969)

    MATH  Google Scholar 

  • A. Bohr, B.R. Mottelson, Nuclear Structure, vol. II (Benjamin, New York/Amesterdam, 1975)

    MATH  Google Scholar 

  • D.M. Brink, R.A. Broglia, Nuclear Superfluidity: Pairing in Finite Systems (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  • A. Bulgac, Hartree-Fock-Bogoliubov approximation for finite systems. arXiv:nucl-th/9907088 (1999)

    Google Scholar 

  • K. Burke, Perspective on density functional theory. J. Chem. Phys. 136(15), 150901 (2012)

    Google Scholar 

  • B.G. Carlsson, J. Dobaczewski, Convergence of density-matrix expansions for nuclear interactions. Phys. Rev. Lett. 105, 122501 (2010)

    Article  ADS  Google Scholar 

  • E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. Nucl. Phys. A 627(4), 710 (1997)

    Google Scholar 

  • E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities. Part II: Nuclei far from stabilities. Nucl. Phys. A 635, 231 (1998)

    Google Scholar 

  • G. Colò, Nuclear density functional theory. Adv. Phys.: X 5(1), 1740061 (2020)

    Google Scholar 

  • D. Davesne, J. Navarro, P. Becker, R. Jodon, J. Meyer, A. Pastore, Extended Skyrme pseudopotential deduced from infinite nuclear matter properties. Phys. Rev. C 91, 064303 (2015)

    Article  ADS  Google Scholar 

  • D. Davesne, J. Navarro, J. Meyer, K. Bennaceur, A. Pastore, Two-body contributions to the effective mass in nuclear effective interactions. Phys. Rev. C 97, 044304 (2018)

    Article  ADS  Google Scholar 

  • J. Dechargé, D. Gogny, Hartree-Fock-Bogolyubov calculations with the D1 effective interaction on spherical nuclei. Phys. Rev. C 21, 1568–1593 (1980)

    Article  ADS  Google Scholar 

  • J. Dobaczewski, J. Dudek, Time-odd components in the mean field of rotating superdeformed nuclei. Phys. Rev. C 52, 1827–1839 (1995)

    Article  ADS  Google Scholar 

  • J. Dobaczewski, J. Dudek, Time-odd components in the rotating mean field and identical bands. Acta Phys. Pol. B 27, 95 (1996)

    Google Scholar 

  • J. Dobaczewski, J. Dudek, Erratum: time-odd components in the mean field of rotating superdeformed nuclei [Pys. Rev. C 52, 1827 (1995)]. Phys. Rev. C 55, 3177–3177 (1997)

    Google Scholar 

  • J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Mean-field description of ground-state properties of drip-line nuclei: pairing and continuum effects. Phys. Rev. C 53, 2809–2840 (1996)

    Article  ADS  Google Scholar 

  • J. Dobaczewski, M.V. Stoitsov, W. Nazarewicz, P.-G. Reinhard, Particle-number projection and the density functional theory. Phys. Rev. C 76, 054315 (2007)

    Article  ADS  Google Scholar 

  • R.M. Dreizler, E.K.U. Gross, Density Functional Theory (Springer, Berlin/Heidelberg/New York, 1990)

    Book  MATH  Google Scholar 

  • T. Duguet, Lecture Notes in Physics, vol. 879 (Springer, Berlin/Heidelberg/New York, 2004), p. 293

    Google Scholar 

  • J. Engel, Intrinsic-density functionals. Phys. Rev. C 75, 014306 (2007)

    Article  ADS  Google Scholar 

  • Y.M. Engel, D.M. Brink, K. Goeke, S.J. Krieger, D. Vautherin, Time-dependent Hartree-Fock theory with Skyrme’s interaction. Nucl. Phys. A 249(2), 215 (1975)

    Google Scholar 

  • E. Epelbaum, U.-G. Meißner, Chiral dynamics of few- and many-nucleon systems. Annu. Rev. Nucl. Part. Sci. 62(1), 159–185 (2012)

    Article  ADS  Google Scholar 

  • J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A.M. Perhac, M. Stoitsov, The limits of the nuclear landscape. Nature 486, 509 (2012)

    Article  ADS  Google Scholar 

  • S.A. Fayans, Towards a universal nuclear density functional. J. Exp. Theor. Phys. Lett. 68(3), 169–174 (1998)

    Article  ADS  Google Scholar 

  • S.A. Fayans, E.L. Trykov, D. Zawischa, Influence of effective spin-orbit interaction on the collective states of nuclei. Nucl. Phys. A 568(3), 523 (1994)

    Google Scholar 

  • S. Frauendorf, A.O. Macchiavelli, Overview of neutron proton pairing. Prog. Part. Nucl. Phys. 78, 24–90 (2014)

    Article  ADS  Google Scholar 

  • G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  • K. Hebeler, Three-nucleon forces: implementation and applications to atomic nuclei and dense matter. Phys. Rep. 890, 1–116 (2021)

    Article  ADS  MATH  Google Scholar 

  • P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, 864–871 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  • D.G. Ireland, W. Nazarewicz, Enhancing the interaction between nuclear experiment and theory through information and statistics. J. Phys. G: Nucl. Part. Phys. 42(3), 030301 (2015)

    Google Scholar 

  • W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133–1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Nuclear energy density optimization: large deformations. Phys. Rev. C 85, 024304 (2012)

    Article  ADS  Google Scholar 

  • M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S.M. Wild, D. Davesne, J. Erler, A. Pastore, Nuclear energy density optimization: shell structure. Phys. Rev. C 89, 054314 (2014)

    Article  ADS  Google Scholar 

  • H.J. Lipkin, Collective motion in many-particle systems: Part 1. The violation of conservation laws. Ann. Phys. 9(2), 272–291 (1960)

    MATH  Google Scholar 

  • O. Lopez, D. Durand, G. Lehaut, B. Borderie, J.D. Frankland, M.F. Rivet, R. Bougault, A. Chbihi, E. Galichet, D. Guinet, M. La Commara, N. Le Neindre, I. Lombardo, L. Manduci, P. Marini, P. Napolitani, M. Pârlog, E. Rosato, G. Spadaccini, E. Vient, M. Vigilante, In-medium effects for nuclear matter in the Fermi-energy domain. Phys. Rev. C 90, 064602 (2014)

    Article  ADS  Google Scholar 

  • R. Machleidt, D.R. Entem, Chiral effective field theory and nuclear forces. Phys. Rep. 503(1), 1–75 (2011)

    Article  ADS  Google Scholar 

  • R. Machleidt, F. Sammarruca, Can chiral EFT give us satisfaction? Eur. Phys. J. A 56(3), 56–95 (2020)

    Article  Google Scholar 

  • R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  • R.M. Martin, L. Reining, D.M. Ceperley, Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, Cambridge, 2016)

    Book  Google Scholar 

  • J. Messud, M. Bender, E. Suraud, Density functional theory and Kohn-Sham scheme for self-bound systems. Phys. Rev. C 80, 054314 (2009)

    Article  ADS  Google Scholar 

  • H. Nakada, Mean-field approach to nuclear structure with semi-realistic nucleon-nucleon interactions. Phys. Rev. C 78, 054301 (2008)

    Article  ADS  Google Scholar 

  • T. Nakatsukasa, K. Matsuyanagi, M. Matsuo, K. Yabana, Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys. 88, 045004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • W. Nazarewicz, The limits of nuclear mass and charge. Nat. Phys. 14(6), 537–541 (2018)

    Article  Google Scholar 

  • J.W. Negele, The mean-field theory of nuclear structure and dynamics. Rev. Mod. Phys. 54, 913–1015 (1982)

    Article  ADS  Google Scholar 

  • L.N. Oliveira, E.K.U. Gross, W. Kohn, Density-functional theory for superconductors. Phys. Rev. Lett. 60, 2430–2433 (1988)

    Article  ADS  Google Scholar 

  • R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1994)

    Google Scholar 

  • J.P. Perdew, K. Schmidt, Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc. 577(1), 1–20 (2001)

    ADS  Google Scholar 

  • J.P. Perdew, A. Ruzsinszky, J. Tao, V.N. Staroverov, G.E. Scuseria, G.I. Csonka, Prescription for the design and selection of density functional approximations: more constraint satisfaction with fewer fits. J. Chem. Phys. 123(6), 062201 (2005)

    Google Scholar 

  • E. Perlińska, S.G. Rohoziński, J. Dobaczewski, W. Nazarewicz, Local density approximation for proton-neutron pairing correlations: formalism. Phys. Rev. C 69, 014316 (2004)

    Article  ADS  Google Scholar 

  • F. Raimondi, B.G. Carlsson, J. Dobaczewski, Effective pseudopotential for energy density functionals with higher-order derivatives. Phys. Rev. C 83, 054311 (2011)

    Article  ADS  Google Scholar 

  • P.-G. Reinhard, H. Flocard, Nuclear effective forces and isotope shifts. Nucl. Phys. A 584(3), 467 (1995)

    Google Scholar 

  • P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin/Heidelberg/New York, 1980)

    Book  Google Scholar 

  • X. Roca-Maza, N. Paar, Nuclear equation of state from ground and collective excited state properties of nuclei. Prog. Part. Nucl. Phys. 101, 96–176 (2018)

    Article  ADS  Google Scholar 

  • H. Sagawa, G. Colò, Tensor interaction in mean-field and density functional theory approaches to nuclear structure. Prog. Part. Nucl. Phys. 76, 76–115 (2014)

    Article  ADS  Google Scholar 

  • H. Sagawa, C.L. Bai, G. Colò, Isovector spin-singlet (T = 1, S = 0) and isoscalar spin-triplet (T = 0, S = 1) pairing interactions and spin-isospin response. Phys. Scr. 91(8), 083011 (2016)

    Google Scholar 

  • K. Sato, J. Dobaczewski, T. Nakatsukasa, W. Satuła, Energy-density-functional calculations including proton-neutron mixing. Phys. Rev. C 88, 061301 (2013)

    Article  ADS  Google Scholar 

  • W. Satuła, J. Dobaczewski, W. Nazarewicz, M. Rafalski, Isospin-symmetry restoration within the nuclear density functional theory: formalism and applications. Phys. Rev. C 81, 054310 (2010)

    Article  ADS  Google Scholar 

  • N. Schunck (ed.), Energy Density Functional Methods for Atomic Nuclei (IoP Publishing, Bristol, 2019)

    Google Scholar 

  • J.A. Sheikh, N. Hinohara, J. Dobaczewski, T. Nakatsukasa, W. Nazarewicz, K. Sato, Isospin-invariant Skyrme energy-density-functional approach with axial symmetry. Phys. Rev. C 89, 054317 (2014)

    Article  ADS  Google Scholar 

  • J.A. Sheikh, J. Dobaczewski, P. Ring, L.M. Robledo, C. Yannouleas, Symmetry restoration in mean-field approaches. J. Phys. G: Nucl. Part. Phys. 48(12), 123001 (2021)

    Google Scholar 

  • T.H.R. Skyrme, CVII. The nuclear surface. Philos. Mag.: J. Theor. Exp. Appl. Phys. 1(11), 1043–1054 (1956)

    Google Scholar 

  • T.H.R. Skyrme, The effective nuclear potential. Nucl. Phys. 9(4), 615–634 (1958)

    Article  MATH  Google Scholar 

  • M. Valiev, G.W. Fernando, Generalized Kohn-Sham Density-Functional Theory via Effective Action Formalism. arXiv:cond-mat/9702247 (1997)

    Google Scholar 

  • D. Vautherin, D.M. Brink, Hartree-Fock calculations with Skyrme’s interaction. I. Spherical nuclei. Phys. Rev. C 5, 626–647 (1972)

    Article  ADS  Google Scholar 

  • V.F. Weisskopf, The problem of an effective mass in nuclear matter. Nucl. Phys. 3(3), 423–432 (1957)

    Article  MATH  Google Scholar 

  • H.S. Yu, S.L. Li, D.G. Truhlar, Perspective: Kohn-sham density functional theory descending a staircase. J. Chem. Phys. 145(13), 130901 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Colò .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Colò, G. (2022). Nuclear Density Functional Theory (DFT). In: Tanihata, I., Toki, H., Kajino, T. (eds) Handbook of Nuclear Physics . Springer, Singapore. https://doi.org/10.1007/978-981-15-8818-1_14-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8818-1_14-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8818-1

  • Online ISBN: 978-981-15-8818-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics