Skip to main content

Metamaterials for Antenna Applications

  • Living reference work entry
  • First Online:
Handbook of Metamaterial-Derived Frequency Selective Surfaces

Part of the book series: Metamaterials Science and Technology ((METSCTE,volume 3))

  • 99 Accesses

Abstract

The invention of metamaterials or artificial materials with engineered electromagnetic responses and exotic material properties finds applications in a wide range of electromagnetic radiating systems. This chapter summarizes different techniques used to enhance the radiation performance of antennas using metamaterials. Here we discuss the four quadrants representing double positive (DPS), double negative (DNG), single negative (SNG), and near-zero-index regions of metamaterials and their corresponding applications in radiation performance of electrically small and standard radiating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alù A, Engheta N (2003) Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans Antennas Propag 51(10):2558–2571

    Article  Google Scholar 

  • Alù A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72(016623):1–9

    Google Scholar 

  • Alù A, Engheta N (2008) Tuning the scattering response of optical nanoantennas with nanocircuit loads. Nat Photonics 2:307–310

    Article  Google Scholar 

  • Alù A, Engheta N (2009) Cloaking a sensor. Phys Rev Lett 102(233901):1–4

    Google Scholar 

  • Alù A, Bilotti F, Vegni L (2007a) Analysis of L-L transmission line metamaterials with coupled inductances. Microw Opt Technol Lett 49(1):94–97

    Article  Google Scholar 

  • Alù A, Bilotti F, Engheta N, Vegni L (2007b) Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans Antennas Propag 55(1):13–25

    Article  Google Scholar 

  • Alù A, Silveirinha MG, Salandrino A, Engheta N (2007c) Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys Rev B 75(155410):1–13

    Google Scholar 

  • Aydin K, Cakmak AO, Sahin L, Li Z, Bilotti F, Vegni L, Ozbay E (2009) Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys Rev Lett 102:013904

    Article  Google Scholar 

  • Azad MZ, Ali M (2008) Novel wideband directional dipole antenna on a mushroom like EBG structure. IEEE Trans Antennas Propag 56(5):1242–1250

    Article  Google Scholar 

  • Balanis CA (2016) Antenna theory: analysis and design. Wiley, Hoboken

    Google Scholar 

  • Bethe HA (1944) Theory of diffraction by small holes. Phys Rev 66(7):163–182

    Article  MathSciNet  MATH  Google Scholar 

  • Bilotti F, Alù A, Vegni L (2008) Design of miniaturized metamaterial patch antennas with -negative loading. IEEE Trans Antennas Propag 56(6):1640–1647

    Article  Google Scholar 

  • Bilotti F, Scorrano L, Ozbay E, Vegni L (2009) Enhanced transmission through a sub-wavelength aperture: resonant approaches employing metamaterials. J Opt A Pure Appl Opt 11(114029):1–8

    Google Scholar 

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, Hoboken

    Google Scholar 

  • Chu LJ (1948) Physical limitations of omni directional antennas. J Appl Phys 19(1163):1163–1175

    Article  Google Scholar 

  • Deepak U, Roshna TK, Nijas CM, Mohanan P (2014) Compact CPW fed electrically small antenna for WLAN application. Electron Lett 50(2):62–64

    Article  Google Scholar 

  • Engheta N, Salandrino A, Alù A (2005) Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504

    Article  Google Scholar 

  • Enoch S, Tayeb G’r, Sabouroux P, Gue’rin N, Vincent P (2002) A metamaterial for directive emission. Phys Rev Lett 899(21):213902-1–213902-4

    Google Scholar 

  • Erentok A, Luljak PL, Ziolkowski RW (2005) Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications. IEEE Trans Antennas Propag 53(1):160–172

    Article  Google Scholar 

  • Ghosh B, Ghosh S, Kakade AB (2008) Investigation of gain enhancement of electrically small antennas using double-negative, single-negative, and double-positive materials. Phys Rev E 78(026611):1–13

    Google Scholar 

  • Ikonen PMT, Maslovski SI, Simovski CR, Tretyakov SA (2006) On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas. IEEE Trans Antennas Propag 54(6):1654–1662

    Article  Google Scholar 

  • Kerker M, Wang DS, Giles L (1983) Electromagnetic scattering by magnetic spheres. J Opt Soc Am 73:765–767

    Article  Google Scholar 

  • Kumar A, Kapoor P,·Kumar P, Kumar J, Kumar A (2020a) Design and development of enhanced gain aperture coupled broadband biodegradable dielectric resonator antenna for WLAN applications. Wirel Pers Commun, 115: 1525–1539

    Article  Google Scholar 

  • Kumar A, Dixit A, Kumar A, Kumar A (2020b) Studies of various artificial magnetic conductor for 5G applications. Opt Wirel Technol 648:523–530

    Article  Google Scholar 

  • Leonhardt U (2006) Optical conformal mapping. Science 312:1777–1780

    Article  MathSciNet  MATH  Google Scholar 

  • Monti A, Soric J, Alù A, Toscano A, Bilotti F (2016) Design of cloaked Yagi-Uda antennas. EPJ Appl Metamater 3(10):3–7

    Google Scholar 

  • Monticone F, Alù A (2017) Metamaterial, plasmonic and nanophotonic devices. Rep Prog Phys 80(036401):1–37

    Google Scholar 

  • Monticone F, Argyropoulos C, Alù A (2017) Optical antennas: controlling electromagnetic scattering, radiation, and emission at the nanoscale. IEEE Antennas Propag Mag 59(6):43–61

    Article  Google Scholar 

  • Naqui J (2016) Fundamentals of planar metamaterials and subwavelength resonators in symmetry properties in transmission lines loaded with electrically small resonators: circuit modeling and applications. Springer thesis

    Google Scholar 

  • Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI (2016) Electromagnetic toroidal excitations in matter and free space. Nat Mater 15:263–271

    Article  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966–3969

    Article  Google Scholar 

  • Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  • Pushpakaran SV, Seid NM, Muhammed RK, Raj AP, Mohanan P, Vasudevan K (2013) A compact stacked dipole antenna with directional radiation coverage for wireless communications. IEEE Antennas Wirel Propag Lett 12:841–844

    Article  Google Scholar 

  • Pushpakaran SV, Raj RK, Pradeep A, Ouseph L, Hari M, Chandroth A, Pezholil M, Kesavath V (2014) An experimental verification of metamaterial coupled enhanced transmission for antenna applications. Appl Phys Lett 104(6):064102

    Article  Google Scholar 

  • Qi MQ, Tang WX, Ma HF, Pan BC, Tao Z, Sun YZ, Cui TJ (2015) Suppressing side-lobe radiations of horn antenna by loading metamaterial lens. Nat Sci Rep 5(9113):1–6

    Google Scholar 

  • Ramo S, Whinnery JR, Van Duzer T (1994) Fields and waves in communication electronics. Wiley, New Delhi

    Google Scholar 

  • Rezaei A, Mohajeri F, Hamzavi-Zarghani Z (2021) Using plasmonic cloaking method on infinite cylindrical structures and its applications. J Comput Electron 20:2522–2529

    Article  Google Scholar 

  • Rotman W (1962) Plasma simulation by artificial dielectrics and parallel plate media. Trans IRE 10(1):81–96

    Google Scholar 

  • Sarin VP, Vinesh PV, Mani M, Chandroth A, Pezholil M, Kesavath V (2019a) A metasurface-based evanescent amplification and propagation conversion for enhancing radiation from an electrically small radiator. Appl Phys A 125(10):1–9, 703

    Google Scholar 

  • Sarin VP, Mani M, Ouseph L, Chandroth A, Pezholil M, Kesavath V (2019b) Enhanced radiation from an electrically small radiator using an array of sub-wavelength holes. J Mod Opt 66(1):109–117

    Article  Google Scholar 

  • Sarin VP, Vinesh PV, Manoj M, Aanandan CK, Mohanan P, Vasudevan K (2020) Extraordinary transmission analog for enhancing radiation from an electrically small radiator. In: URSI Regional Conference on Radio Science (URSI-RCRS), pp 1–4

    Google Scholar 

  • Shelkunoff A, Friis HT (1966) Antennas theory and practice. Wiley, New York

    Google Scholar 

  • Sievenpiper D, Zhang L, Broas RFJ, Alexopolous NG, Yablonovitch E (1999) High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans Microwave Theory Tech 47(11):2059–2074

    Article  Google Scholar 

  • Smith GS (1977) Efficiency of electrically small antennas combined with matching networks. IEEE Trans Antennas Propag 25(3):369–373

    Article  Google Scholar 

  • Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84(18):4184–4187

    Article  Google Scholar 

  • Taminiau TH, Karaveli S, van Hulst NF, Zia R (2012) Quantifying the magnetic nature of light emission. Nat Commun 3(979):1–6

    Google Scholar 

  • Tretyakov SA, Maslovski S, Belov PA (2003) An analytical model of metamaterials based on loaded wire dipoles. IEEE Trans Antennas Propag 51(10):2652–2658

    Article  Google Scholar 

  • Vaselago VG (1967) The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 10(4):509–514

    Article  Google Scholar 

  • Weber W (1852) On the relationship of the science of the diamagnetism with the sciences of magnetism and electricity. Ann Phys 87:145–189

    Article  Google Scholar 

  • Zhang X, Liu Z (2008) Super lenses to overcome the diffraction limit. Nat Mater 7:435–441

    Article  Google Scholar 

  • Ziolkowski RW, Erentok A (2006) Metamaterial-based efficient electrically small antennas. IEEE Trans Antennas Propag 54(7):2113–2130

    Article  Google Scholar 

  • Ziolkowski RW, Kipple AD (2003) Application of double negative materials to increase the power radiated by electrically small antennas. IEEE Trans Antennas Propag 51(10):2626–2640

    Article  Google Scholar 

  • Ziolkowski RW, Kipple AD (2005) Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells. Phys Rev E 72(036602):2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarin, V.P., Vasudevan, K. (2022). Metamaterials for Antenna Applications. In: Narayan, S., Kesavan, A. (eds) Handbook of Metamaterial-Derived Frequency Selective Surfaces. Metamaterials Science and Technology, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-15-8597-5_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8597-5_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8597-5

  • Online ISBN: 978-981-15-8597-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics