Skip to main content

Metamaterial-based High-Performance Radar Absorbing Structure

  • Living reference work entry
  • First Online:
Handbook of Metamaterial-Derived Frequency Selective Surfaces

Part of the book series: Metamaterials Science and Technology ((METSCTE,volume 3))

Abstract

In this chapter, metamaterial-based absorbers have been discussed. Initially, the chapter deals with the evolution of metamaterial absorbers by introducing the design limitations of conventional absorbers. The reason for unity absorption in a metamaterial absorber has been explained based on different absorption mechanisms and different types of losses associated with the structure. A simulative study on the role of dielectric loss tangent on the absorptivity response has been discussed in detail. The chapter presents the design of various single-band, multi-band, and broad-band metamaterial absorbers in the GHz (S, C, and X), THz, and IR (Infrared) frequency bands. The experimental and testing methods have been discussed stepwise. The chapter also demonstrates the absorption mechanism based on multiple reflection interference theory in a detailed way. The ambiguity found in the resonance theory of absorption (based on electric and magnetic resonances) has been well explained through multiple interference theory. The last section of the chapter presents the mathematical modelling of the metamaterial absorbers. All the characteristics such as absorption, polarization insensitivity, and surface current orientation have been validated mathematically in light of electric and magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Areed NFF, El Malt SM, Obayya SSA (2016) Broadband omnidirectional nearly perfect plasmonic absorber for solar energy harvesting. IEEE Photonics J 8(5):1–18

    Article  Google Scholar 

  • Bagmanci M, Karaaslan M, Unal E, Akgol O, Bakir M, Subah C (2019) Solar energy harvesting with ultra-broadband metamaterial absorber. Int J Mod Phys B 33(8):1950056

    Google Scholar 

  • Bagmanci M, Karaaslan M, Unnal E, Akgol O, Sabah C (2017) Extremely-broad band metamaterial absorber for solar energy harvesting based on star shaped resonator. Opt Quant Electron 49, p 257

    Google Scholar 

  • Bai X, Cheng YJ, Ding YR, Zhang JF (2020) A metamaterial-based-band shared-aperture phased-Array antenna with wide beam scanning coverage. IEEE Trans Antennas Propag 68(6):4283–4292

    Article  Google Scholar 

  • Bhattacharya A, Bhattacharyya S, Ghosh S, Chaurasiya D, Srivastava KV (2015) An ultra-thin Penta-band polarization-insensitive compact metamaterial absorber for airborne radar application. Microw Opt Technol Lett 57(11):2519–2524

    Article  Google Scholar 

  • Bhattacharyya S, Baradiya H, Chaudhary RK, Srivastava KV (2012) An electric field driven LC resonator structure as ultra thin metamaterial absorber. In: 5th annual conference, antenna test and measurement society, Mumbai. 2–3 February

    Google Scholar 

  • Bhattacharyya S, Ghosh S, Baradiya H, Srivastava KV (2014) Study on ultra-thin dual frequency metamaterial absorber with retrieval of electromagnetic parameters. In: IEEE national conference on communication (NCC 2014). IIT Kanpur, 28 February–2 March

    Google Scholar 

  • Bhattacharyya S, Ghosh S, Chaurasiya D (2015) Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl Phys A Mater Sci Process 118:207–215

    Article  Google Scholar 

  • Bhattacharyya S, Ghosh S, Shrivastava KV (2014) Equivalent circuit model of an ultrathin polarization-independent triple band metamaterial absorber. AIP Adv 14(9):097127

    Article  Google Scholar 

  • Bhattacharyya S, Ghosh S, Srivastava KV (2013) An ultra-thin polarization independent metamaterial absorber for triple band applications. In: 2013 IEEE applied electromagnetics conference (AEMC), Bhubaneswar, pp 1–2

    Google Scholar 

  • Bhattacharyya S, Ghosh S, Srivastava KV (2017) A wideband cross polarization conversion using metasurface. Radio Sci 52:1395–1404

    Google Scholar 

  • Callister WD, Rethwisch DG (2010) Materials science and engineering: an introduction. John Wiley & Sons

    Google Scholar 

  • Caloz C, Itoh T (2006) Electromagnetic metamaterials: transmission line theory and microwave applications. John Wiley & Sons, New York. 5(1):015804

    Google Scholar 

  • Chen HT, Taylor AJ, Yu N (2016) A review on metasurfaces: physics and applications. Rep Prog Phys 79:076401

    Article  Google Scholar 

  • Chen H, Yang X, Wu S, Zhang D, Xiao H, Huang K, Zhu Z (2018) Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application. Materials Research Express 5(1):015804

    Google Scholar 

  • Chen K, Zhu B, Jia N, Sima B, Zhao J, Jiang T, Feng Y (2014) Ultrathin microwave absorber in wireless communication band made of Swiss roll metamaterial structure. In: 2014 IEEE international wireless symposium (IWS 2014), X’ian, pp 1–4

    Google Scholar 

  • Cheng DK (1983) Field and wave electromagnetics. Addison Wessley Publishing Company, United states of America

    Google Scholar 

  • Choudhary V, Rönnow D, Tripathy MR (2020) Metamaterial-based-absorber to improve the performance of S and X band radar systems. In: 2020 7th international conference on signal processing and integrated networks (SPIN), Noida, pp 126–129

    Google Scholar 

  • Dallenbach W, Kleinsteuber W (1938) Reflection and absorption of decimeter-waves by plane dielectric layers. Hochfreq u Elektroak 51(152):152–156

    Google Scholar 

  • Dhillon AS, Mittal D, Argota R (2019) Triple band ultra-thin polarization insensitive metamaterial absorber for defense, explosive detection and airborne radar applications. Microw Opt Technol Lett 61:89–95

    Article  Google Scholar 

  • Frickey DA (2014) Using the inverse chirp-Z transform for time-domain analysis of simulated radar signals. In: ICSPAT 94: signal procession applications and technology, pp 18–21

    Google Scholar 

  • Ghosh S, Bhattacharyya S, Kaiprath Y, Chaurasiya D, Srivastava KV (2015) Triple-band polarization-independent metamaterial absorber using destructive interference. In: European microwave conference, Paris/France pp 335–338

    Google Scholar 

  • Ghosh SK, Das S, Bhattacharyya S (2020) Graphene based metasurface with near unity broadband absorption in the terahertz gap. Int J RF Microw Comput Aided Eng Design 30(2):e12088

    Google Scholar 

  • Ghosh S, Das S, Samantaray D, Bhattacharyya S (2020) Meander line based defected ground microstrip antenna slotted with SRR for terahertz range. Wiley Eng Rep 2(1)

    Google Scholar 

  • Ghosh S, Srivastava KV (2016) A polarization independent single band switchable metamaterial absorber. In: IEEE URSI international symposium on electromagnetic theory (EMTS)., September, Espoo, Finalnd

    Google Scholar 

  • Ghosh SK, Yadav VS, Das S, Bhattacharyya S (2020) Tunable graphene-based metasurface for polarization-independent broadband absorption in lower mid-infrared (MIR) range. IEEE Trans Electromagn Compat 62(2):346–354

    Article  Google Scholar 

  • Glybovski SB, Tretyakov SA, Belov PA, Kivshar YS, Simovski C (2016) Metasurfaces: from microwaves to visible. Phys Rep 634:1–72

    Article  MathSciNet  Google Scholar 

  • Hannan S, Islam MT, Sahar NM, Mat K, Chowdhury MEH, Rmili H (2020) Modified-segmented Split-ring based polarization and angle-insensitive multi-band metamaterial absorber for X, Ku and K band applications. IEEE Access 8:144051–144063

    Article  Google Scholar 

  • Hashmi RM, Zeb BA, Esselle KP (2014) Wideband high-gain EBG resonator antennas with small footprints and all-dielectric superstructures. IEEE Trans Antennas Propag 62(6):2970–2977

    Article  Google Scholar 

  • Hawkins G, Hunneman R (2004) The temperature-dependent spectral properties of filter substrate materials in the far-infrared (640 μm). Infrared Phys Technol 45(1):69–79

    Article  Google Scholar 

  • Haxha S, AbdelMalek F, Ouerghi F, Charlton MDB, Aggoun A, Fang X (2018) Metamaterial Superlenses operating at visible wavelength for imaging applications. Sci Rep 8(16119)

    Google Scholar 

  • Hu CG, Li X, Feng Q, X. ‘n Chen, Luo XG (2010) Investigation on the role of the dielectric loss in metamaterial absorber. Opt Express 18(7):6598–6603

    Article  Google Scholar 

  • Jeon J, Bhattarai K, Kim D, Kim J, Urbas A, Lee SJ, Ku Z, Zhau J (2016) A low-loss Metasurface antireflection coating on dispersive surface Plasmon structure. Sci Rep 6:36190

    Article  Google Scholar 

  • Jing YL, Li ZF, Li Q, Chen XS, Chen PP, Weng H, Li MY, Li N, Lu W (2016) Pixel-level plasmonic microcavity infrared photodetector. Sci Rep 6:25849

    Article  Google Scholar 

  • Kayal S, Shaw T, Mitra D (2020) Design of metamaterial-based compact and highly sensitive microwave liquid sensor. Appl Phys A Mater Sci Process 126(1):3186

    Google Scholar 

  • Knott EF, Lunden CD (1995) The two-sheet capacitive Jaumann absorber. IEEE Trans Antennas Propag 43(11):1339–1343

    Article  Google Scholar 

  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  Google Scholar 

  • Lee YP, Rhee JY, Yoo YJ, Kim KW (2016) Metamaterials for perfect absorption, Springer series in materials science, vol 236, 1st edn, Singapore

    Google Scholar 

  • Li M, Yang HL, Hou XW, Tian Y, D.Y. Hou, Prog (2010) Perfect metamaterial absorber with dual bands. Prog Electromagn Res 108:37–49

    Article  Google Scholar 

  • Liu W, Chen ZN, Qing X (2015) Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna. IEEE Trans Antennas Propag 63(7):3325–3329

    Article  Google Scholar 

  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  Google Scholar 

  • Mishra RN, Arora A, Singh S, Bhattacharyya S (2017) A split ring resonator (SRR) based metamaterial structure for bandstop filter applications. In: 2017 IEEE applied electromagnetics conference (AEMC), Aurangabad

    Google Scholar 

  • Mullah B, Sabah C (2016) Multiband metamaterial absorber design based on Plasmonic resonances for solar energy harvesting. Plasmonics 11:1313–1321

    Article  Google Scholar 

  • Munk BA (2000) Frequency selective surfaces: theory and design. John Wiley & Sons

    Book  Google Scholar 

  • Neu J, Krolla B, Paul O, Reinhard B, Beigang R, Rahm M (2010) Metamaterial-based gradient index lens with strong focusing in the THz frequency range. Opt Express 18(26):27748–27757

    Article  Google Scholar 

  • Nilotpal A, Bhattacharyya S, Chakrabarti P (2020a) Frequency- and time-domain analyses of multiple reflections and interference phenomena in a metamaterial absorber. J Opt Soc Am B 37:586–592

    Article  Google Scholar 

  • Nilotpal, Bhattacharyya S, Chakrabarti P (2020b) Mathematical interpretation of wave propagation, standing wave resonance, and absorption in a metasurface absorber. Opt Eng 59(10):107102

    Article  Google Scholar 

  • Nilotpal SB, Chakrabarti P (2018) An ultrathin wide angle polarization insensitive mid-infrared metamaterial absorber for THz detection. In: 2018 IEEE MTT-S international microwave and RF conference (IMaRC), Kolkata, pp 1–1

    Google Scholar 

  • Nilotpal SB, Chakrabarti P (2019) A simple ultrathin quad band polarization insensitive metamaterial absorber for infrared applications. In: 2019 URSI Asia-Pacific radio science conference (AP-RASC), New Delhi, pp 1–4

    Google Scholar 

  • Nilotpal L, Nama SB, Chakrabarti P (2019) A metasurface-based broadband quasi non-dispersive cross polarization converter for far infrared region. Int J RF Microw Comput-Aided Eng 29(10)

    Google Scholar 

  • Nilotpal RN, Bhattacharyya S (2019) A transmittive type broadband cross polarization converter for mid wavelength infrared region. In: 2019 URSI Asia Pacific radio science conference (AP-RASC 2019), New Delhi. 9–15 March

    Google Scholar 

  • Nilotpal AK, Singh M, Upadhyay R, Lata SB, Chakrabarti P (2018) A proposed long wavelength infra-red metamaterial absorber for THz detection. In: 2018 IEEE international symposium on antennas and propagation & USNC/URSI National Radio Science Meeting, Boston, MA, pp 2067–2068

    Google Scholar 

  • Nilotpal, Upadhyay DK (2016) A compact UWB-bandpass filter based on CRLH via-less CPW-fed. Microw Opt Technol Lett 58(2):276–279

    Article  Google Scholar 

  • Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW Jr, Ward CA (1983) Optical properties of the metals Al, co, cu, au, Fe, Pb, Ni, Pd, Pt, ag, Ti, and W in the infrared and far-infrared. Appl Opt 22(7):1099–1119

    Article  Google Scholar 

  • Ozer Z, Mamedov AM, Ozbay E (2016) Metamaterial absorber based multifunctional sensor application, IOP Conference Series: Materials Science and Engineering, vol 175, Hungary Miskolc, Hungary

    Google Scholar 

  • Patel SK, Charola S, Parmar J, Ldumor M (2019) Broadband metasurface solar absorber in the visible and near-infrared region. Mat Res Exps 6(8)

    Google Scholar 

  • Pendry J (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85(18):3966

    Article  Google Scholar 

  • Peng XY et al (2012) Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt Express 20(25):27756–27765

    Article  Google Scholar 

  • Qiang R, Chen RL, Chen J (2004) Modeling electrical properties of gold films at infrared frequency using FDTD method. Int J Infrared Millim Waves 25:1263–1270

    Article  Google Scholar 

  • Saadeldin AS, Hameed MFO, Elkaramany EMA, Obayya SSA (2019) Highly sensitive terahertz metamaterial sensor. IEEE Sensors J 19(18):7993–7999

    Article  Google Scholar 

  • Saikia M, Ghosh S, Srivastava KV (2017) Design and analysis of ultra-thin polarization rotating frequency selective surface using V-shaped slots. IEEE Antennas Wirel Propag Lett 16(1):2022–2025

    Article  Google Scholar 

  • Salisbury WW. Absorbent body for electromagnetic waves, US Patent 2599944 (1952)

    Google Scholar 

  • Samantaray D, Bhattacharyya S (2020) A gain-enhanced slotted patch antenna using Metasurface as superstrate configuration. IEEE Trans Antennas Propag 68(9):6548–6556

    Article  Google Scholar 

  • Samantaray D, Bhattacharyya S, Srinivas KV (2019) A modified fractal-shaped slotted patch antenna with defected ground using metasurface for dual band applications. Int. J. RF Microw Comput-Aided Eng 29(12):e21932

    Article  Google Scholar 

  • Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407

    Article  Google Scholar 

  • Shen F, Kang Q, Wang J, Guo K, Zhou Q, Guo Z (2018) Dielectric Metasurface-based high-efficiency mid-infrared optical filter. Nano 18(11):938

    Google Scholar 

  • Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui TJ (2012) Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl Phys Lett 101(15):154102

    Article  Google Scholar 

  • Sheokand H, Ghosh S, Singh G, Saikia M, Shrivastava KV, Ramkumar J, Anantha Ramakrishna S (2017) Transparent broadband metamaterial absorber based on resistive films. J Appl Phys 122:105105

    Google Scholar 

  • Song J, Huang C, Yang J, Zhang X, Peng J, Luo X (2020) Broadband and tunable radar absorber based on graphene capacitor integrated with resistive frequency-selective surface. IEEE Trans Antennas Propag 68(3):2446–2450

    Article  Google Scholar 

  • Tak J, Jeong E, Choi J (2017) Metamaterial absorbers for 24-GHz automotive radar applications. J Electromagn Waves Appl 31(6):577–593

    Article  Google Scholar 

  • Vafapour Z (2019) Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications. IEEE Trans Nanobioscience 18(4):622–627

    Article  Google Scholar 

  • Walser RM (2001) Electromagnetic metamaterials. Proc SPIE 446 4467:1–15

    Google Scholar 

  • Wang W, Chen Y, Yang S, Cao Q, Li H, Zheng X, Wang Y (2016) Wireless inter/intra-chip communication using an innovative PCB channel bounded by a metamaterial absorber. IEEE Antennas Wirel Propag Lett 15:1634–1637

    Article  Google Scholar 

  • Wang BX, He Y, Lou P, Xing W (2020) Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv 2:763–769

    Article  Google Scholar 

  • Wanghuang T, Chen W, Huang Y, Wen G (2013) Analysis of metamaterial absorber in normal and oblique incidence by using interference theory. AIP Adv 3:102118

    Article  Google Scholar 

  • Winson D, Choudhury B, Selvakumar N, Barshilia H, Nair RU (2019) Design and development of a hybrid broadband radar absorber using metamaterial and graphene. IEEE Trans Antennas Propag 67(8):5446–5452

    Article  Google Scholar 

  • Wu D, Liu Y, Li R (2016) Infrared perfect ultra-narrow band absorber as plasmonic sensor. In: Asia communications and photonics conference

    Google Scholar 

  • Xu H, Hu L, Lu Y, Xu J, Chen Y (2019) Dual-band metamaterial absorbers in the visible and near-infrared regions. J Phys Chem C 123:10028–11033

    Article  Google Scholar 

  • Yadav VS, Ghosh SK, Bhattacharyya S, Das S (2018) Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl Opt 57:8720–8726

    Article  Google Scholar 

  • Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303(5663):1494–1496

    Article  Google Scholar 

  • Zhang C, Chang H, Zhao F, Hu X (2013) Design principle of Au grating couplers for quantum-well infrared photodetectors. Opt Lett 38:4037–4039

    Article  Google Scholar 

  • Zheng Y, Zhou JY, Cao X, Yang H, Li S, Li T (2018) Wideband gain enhancement and RCS reduction of Fabry–Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Trans Antennas Propag 66(2):590–599

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somak Bhattacharyya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nilotpal, R.S., Bhattacharyya, S. (2022). Metamaterial-based High-Performance Radar Absorbing Structure. In: Narayan, S., Kesavan, A. (eds) Handbook of Metamaterial-Derived Frequency Selective Surfaces. Metamaterials Science and Technology, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-15-8597-5_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8597-5_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8597-5

  • Online ISBN: 978-981-15-8597-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics