Skip to main content

Study of Interface Properties of Epoxy Filled Nanocellulose of Natural Fiber-Based Composites

  • Living reference work entry
  • First Online:
Handbook of Epoxy/Fiber Composites

Abstract

This chapter reviews recent progress on the development and application of cellulose of different types. Several cellulose sources such as plant, lignocellulosic materials, bacterial, and green growth cellulose were discussed. Standard techniques used for extracting cellulose and their characterization were also evaluated. The utilization of cellulose arranged in different sorts, including but not limited to cellulose microcrystalline (MCC), cellulose nanocrystal (CNC), cellulose nanofibers (CNF), and all forms of nano-cellulosic structures such as fibers, whiskers, and miniaturized scale fibrillated cellulose (MFC) were examined. The polymer’s development and characterization, such as epoxy reinforced with the cellulose of different sizes extracted from various sources, were evaluated. The mechanical, thermal, and physical properties of cellulose reinforced composite were examined, and matrix-filler interface characteristics were highlighted. These properties were evaluated based on cellulose percentage loading, and composite properties with cellulose extracted from different sources were also compared. The present application of cellulose reinforced biocomposite with their future scope of this material was also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • M.A. Akhlaghi, R. Bagherpour, H. Kalhori, Application of bacterial nanocellulose fibers as reinforcement in cement composites. Constr. Build. Mater. 241, 118061 (2020)

    CAS  Google Scholar 

  • H. Alamri, I.M. Low, Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC. J. Appl. Polym. Sci. 126(S1), E222–E232 (2012)

    Google Scholar 

  • M. Alavi, Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers 19(1), 103–119 (2019)

    CAS  Google Scholar 

  • V. Arthanarieswaran, A. Kumaravel, M. Kathirselvam, Evaluation of mechanical properties of banana and sisal fiber reinforced epoxy composites: Influence of glass fiber hybridization. Mater. Des. 64, 194–202 (2014)

    CAS  Google Scholar 

  • A. Bhatnagar, M. Sain, Processing of cellulose nanofiber-reinforced composites. J. Reinf. Plast. Compos. 24(12), 1259–1268 (2005)

    CAS  Google Scholar 

  • M. Cai, H. Takagi, A.N. Nakagaito, Y. Li, G.I. Waterhouse, Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos. A: Appl. Sci. Manuf. 90, 589–597 (2016)

    CAS  Google Scholar 

  • Y. Chu, Y. Sun, W. Wu, H. Xiao, Dispersion properties of nanocellulose: a review. Carbohydr. Polym. 250, 116892 (2020)

    CAS  Google Scholar 

  • H. Chun, S.-Y. Park, S.-J. Park, Y.-J. Kim, Preparation of low-CTE composite using new alkoxysilyl-functionalized bisphenol A novolac epoxy and its CTE enhancement mechanism. Polymer 207, 122916 (2020)

    CAS  Google Scholar 

  • D. Ciolacu, J. Kovac, V. Kokol, The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr. Res. 345(5), 621–630 (2010)

    CAS  Google Scholar 

  • L. de Mendonça Neuba et al., Promising mechanical, thermal, and ballistic properties of novel epoxy composites reinforced with cyperus malaccensis sedge fiber. Polymers 12(8), 1776 (2020)

    Google Scholar 

  • J.P. de Oliveira et al., Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 221, 153–160 (2017)

    CAS  Google Scholar 

  • E. Fortunati, D. Puglia, M. Monti, C. Santulli, M. Maniruzzaman, J.M. Kenny, Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J. Appl. Polym. Sci. 128(5), 3220–3230 (2013)

    CAS  Google Scholar 

  • A.N. Frone, D.M. Panaitescu, D. Donescu, Some aspects concerning the isolation of cellulose micro-and nano-fibers. UPB Bull. Stiintific Ser. B Chem. Mater. Sci. 73(2), 133–152 (2011)

    CAS  Google Scholar 

  • O.J. Gbadeyan, Low friction hybrid nanocomposite material for brake pad application (2017)

    Google Scholar 

  • O.J. Gbadeyan, K. Kanny, T.P. Mohan, Influence of the multi-walled carbon nanotube and short carbon fibre composition on tribological properties of epoxy composites. Tribol. – Mater. Surf. Interfaces 11(2), 59–65 (2017). https://doi.org/10.1080/17515831.2017.1293763

    Article  CAS  Google Scholar 

  • O.J. Gbadeyan, S. Adali, G. Bright, B. Sithole, A. Omojoola, Studies on the mechanical and absorption properties of achatina fulica snail and eggshells reinforced composite materials. Compos. Struct. 239, 112043 (2020a). https://doi.org/10.1016/j.compstruct.2020.112043

    Article  Google Scholar 

  • O.J. Gbadeyan, S. Adali, G. Bright, B. Sithole, S. Onwubu, Optimization of milling procedures for synthesizing nano-CaCO3 from achatina fulica shell through mechanochemical techniques. J. Nanomater. 2020, 4370172 (2020b). https://doi.org/10.1155/2020/4370172

    Article  CAS  Google Scholar 

  • E. Gehri, High performing jointing technique using glued-in rods, in 11th World Conference on Timber Engineering 2010, vol. 2010, (WCTE, 2010)

    Google Scholar 

  • A. Hadjadj et al., Effects of cellulose fiber content on physical properties of polyurethane based composites. Compos. Struct. 135, 217–223 (2016)

    Google Scholar 

  • K.M. Håkansson et al., Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments. Nat. Commun. 5(1), 1–10 (2014)

    Google Scholar 

  • T. Heckmann, J.P. McEvoy, K. Markantonakis, R.N. Akram, D. Naccache, Removing epoxy underfill between neighbouring components using acid for component chip-off. Digit. Investig. 29, 198–209 (2019)

    Google Scholar 

  • M. Henriksson, L. Fogelström, L.A. Berglund, M. Johansson, A. Hult, Novel nanocomposite concept based on cross-linking of hyperbranched polymers in reactive cellulose nanopaper templates. Compos. Sci. Technol. 71(1), 13–17 (2011)

    CAS  Google Scholar 

  • S. Iwamoto, A. Isogai, T. Iwata, Structure and mechanical properties of wet-spun fibers made from natural cellulose nanofibers. Biomacromolecules 12(3), 831–836 (2011)

    CAS  Google Scholar 

  • M. Jonoobi, Y. Aitomäki, A.P. Mathew, K. Oksman, Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos. A: Appl. Sci. Manuf. 58, 30–35 (2014a)

    CAS  Google Scholar 

  • M. Jonoobi, Y. Aitomäki, A.P. Mathew, K. Oksman, Thermoplastic polymer impregnation of cellulose nanofibre networks: morphology, mechanical and optical properties. Compos. Part A Appl. Sci. Manufac. 58, 30 (2014b)

    CAS  Google Scholar 

  • S. Kalia, B. Kaith, I. Kaur, Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology (Springer Science & Business Media, 2011)

    Google Scholar 

  • A. Khan, A.M. Asiri, M. Jawaid, N. Saba, Effect of cellulose nano fibers and nano clays on the mechanical, morphological, thermal and dynamic mechanical performance of kenaf/epoxy composites. Carbohydr. Polym. 239, 116248 (2020)

    CAS  Google Scholar 

  • V. Kumar, P. Pathak, N.K. Bhardwaj, Waste paper: an underutilized but promising source for nanocellulose mining. Waste Manag. 102, 281–303 (2020)

    CAS  Google Scholar 

  • K.-Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Technol. 105, 15–27 (2014)

    Google Scholar 

  • T. Li et al., Developing fibrillated cellulose as a sustainable technological material. Nature 590(7844), 47–56 (2021)

    CAS  Google Scholar 

  • Y. Lu, H.L. Tekinalp, C.C. Eberle, W. Peter, A.K. Naskar, S. Ozcan, Nanocellulose in polymer composites and biomedical applications. TAPPI J. 13(6), 47–54 (2014)

    CAS  Google Scholar 

  • Z. Lu et al., Study on the wet-web strength and pressability of paper sheet during the press process with the addition of nano-fibrillated cellulose (NFC). Carbohydr. Polym. 210, 332–338 (2019)

    CAS  Google Scholar 

  • R.K. Mishra, A. Sabu, S.K. Tiwari, Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J. Saudi Chem. Soc. 22(8), 949–978 (2018)

    CAS  Google Scholar 

  • T.P. Mohan, K. Kanny, Synthesis and manufacturing of epoxy composites, in Epoxy Composites, (Wiley-VCH, 2021), pp. 23–59

    Google Scholar 

  • A.N. Nakagaito, H. Yano, Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl. Phys. A 80(1), 155–159 (2005)

    CAS  Google Scholar 

  • P. Nehra, R. Chauhan, Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. J. Biomater. Sci. Polym. Ed. 32(1), 112–149 (2021)

    CAS  Google Scholar 

  • T. Nissilä, M. Hietala, K. Oksman, A method for preparing epoxy-cellulose nanofiber composites with an oriented structure. Compos. A: Appl. Sci. Manuf. 125, 105515 (2019)

    Google Scholar 

  • D. Puglia, M.A.S. Al-Maadeed, J.M. Kenny, S. Thomas, Elastomer/thermoplastic modified epoxy nanocomposites: the hybrid effect of ‘micro’ and ‘nano’ scale. Mater. Sci. Eng. R. Rep. 116, 1–29 (2017)

    Google Scholar 

  • S.K. Ramamoorthy, M. Skrifvars, A. Persson, A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym. Rev. 55(1), 107–162 (2015)

    CAS  Google Scholar 

  • A. Ramesh, N.V. Srinivasulu, M. I. Rani, Development and evaluation of water absorption, compression and impact properties of okra nanocellulose fibers reinforced epoxy composites. Materials Today: Proceedings, 19, 748–754 (2019)

    Google Scholar 

  • B.V. Ramnath et al., Evaluation of mechanical properties of abaca–jute–glass fibre reinforced epoxy composite. Mater. Des. 51, 357–366 (2013)

    Google Scholar 

  • B.V. Ramnath, V. Manickavasagam, C. Elanchezhian, C.V. Krishna, S. Karthik, K. Saravanan, Determination of mechanical properties of intra-layer abaca–jute–glass fiber reinforced composite. Mater. Des. 60, 643–652 (2014)

    Google Scholar 

  • S.S. Ray, A.O.C. Iroegbu, Nanocellulosics: benign, sustainable, and ubiquitous biomaterials for water remediation. ACS Omega 6(7), 4511–4526 (2021)

    CAS  Google Scholar 

  • M. Rayung, N.A. Ibrahim, N. Zainuddin, W.Z. Saad, N.I.A. Razak, B.W. Chieng, The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. Int. J. Mol. Sci. 15(8), 14728–14742 (2014). [Online]. Available: https://www.mdpi.com/1422-0067/15/8/14728

    CAS  Google Scholar 

  • S. Serroukh, P. Huber, A. Lallam, Adsorption behavior of optical brightening agent on microfibrillated cellulose studied through inverse liquid chromatography: the need to correct for axial dispersion effect. J. Chromatogr. A 1533, 17–29 (2018)

    CAS  Google Scholar 

  • C. Sharma, N.K. Bhardwaj, Bacterial nanocellulose: present status, biomedical applications and future perspectives. Mater. Sci. Eng. C 104, 109963 (2019)

    CAS  Google Scholar 

  • A.K. Sinha, H. Narang, S. Bhattacharya, Effect of alkali treatment on surface morphology of abaca fibre. Mater. Today Proc 4(8), 8993–8996 (2017)

    Google Scholar 

  • I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3), 459–494 (2010)

    Google Scholar 

  • P. Thomas et al., Comprehensive review on nanocellulose: recent developments, challenges and future prospects. J. Mech. Behav. Biomed. Mater. 110, 103884 (2020)

    CAS  Google Scholar 

  • D. Trache et al., Microcrystalline cellulose: isolation, characterization and bio-composites application – a review. Int. J. Biol. Macromol. 93, 789–804 (2016)

    CAS  Google Scholar 

  • J. Xu et al., High-strength, transparent and superhydrophobic nanocellulose/nanochitin membranes fabricated via crosslinking of nanofibers and coating F-SiO2 suspensions. Carbohydr. Polym. 247, 116694 (2020)

    CAS  Google Scholar 

  • M. Yadav, K. Paritosh, V. Vivekanand, Lignocellulose to bio-hydrogen: an overview on recent developments. Int. J. Hydrog. Energy 45(36), 18195–18210 (2020)

    CAS  Google Scholar 

  • M. Yan, W. Jiao, G. Ding, Z. Chu, Y. Huang, R. Wang, High strength and toughness epoxy nanocomposites reinforced with graphene oxide-nanocellulose micro/nanoscale structures. Appl. Surf. Sci. 497, 143802 (2019)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mohan, T.P., Gbadeyan, O.J., Kanny, K. (2022). Study of Interface Properties of Epoxy Filled Nanocellulose of Natural Fiber-Based Composites. In: Mavinkere Rangappa, S., Parameswaranpillai, J., Siengchin, S., Thomas, S. (eds) Handbook of Epoxy/Fiber Composites . Springer, Singapore. https://doi.org/10.1007/978-981-15-8141-0_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8141-0_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8141-0

  • Online ISBN: 978-981-15-8141-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics