Skip to main content

Green and Sustainable Approaches of Nanoparticles

  • Living reference work entry
  • First Online:
Handbook of Consumer Nanoproducts
  • 49 Accesses

Abstract

Green and sustainable development of consumer products is need for incorporation of human lifestyle and analyzes the environmental impacts. The ultimate goal of any development in science is to improve human health and well-being. Therefore, scientific communities are always eager to develop or apply clean and green technology in research fields. A branch of green nanotechnology is highly contributing in the form of green approaches for producing nanoproducts/nanomaterials, which will not affect or harm the human and environment. In this chapter, we mainly focus on a current state of technology used in the manufacture of green nanoproducts in order to develop the materials, and many nanomaterials are being used for solving environmental issues. It provides a preliminary analysis of significant property of normally used nanomanufacturing techniques including various parameters. This chapter also deals with the current research in the development of new nanomaterials for potential applications in the field of environment concern, such as solar cells, water purifying technology, air pollution control, etc.

Finally, we highlighted the road map of current technologies, indicated the future directions, and discussed any drawbacks, if any. We pointed out the fundamental obstacles in the field of green nanotechnology and argued that the improvement in green and sustainable technologies has the high potential to solve the new and challenging problems. We believe that our work greatly increases the understanding and usability of green nanoproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Qahtani KM (2017) Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract. Egypt J Aquat Res 43:269–274. https://doi.org/10.1016/j.ejar.2017.10.003

    Article  Google Scholar 

  2. Anderson AA et al (2010) The changing information environment for nanotechnology: online audiences and content. J Nanopart Res 12(4):1083–1094. https://doi.org/10.1007/s11051-010-9860-2

    Article  Google Scholar 

  3. Bhagavathi SS, Vijayan SR, Govindaraju ACC, Natarajan S (2019) Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula – in vitro evaluation of anticancer and antimicrobial activity. J Drug Delivery Sci Technol 51:139–151. https://doi.org/10.1016/j.jddst.2019.02.024

    Article  CAS  Google Scholar 

  4. Bhattacharya S, Saha I, Mukhopadhyay A, Chattopadhyay D, Chand U (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Technol 3(3):59–64

    Google Scholar 

  5. Bindhu MR, Umadevi M, Esmail GA, AlDhabi NA, Arasu MV (2020) Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B Biol 205:111836. https://doi.org/10.1016/j.jphotobiol.2020.111836

    Article  CAS  Google Scholar 

  6. Bottino A, Capannelli G, D’Asti V, Piaggio P (2001) Preparation and properties of novel organic-inorganic porous membranes. Sep Purif Technol 22(3):269–275. https://doi.org/10.1016/S1383-5866(00)00127-1

    Article  Google Scholar 

  7. Chen C, Lu Y, Kong ES, Zhang Y, Lee ST (2008) Nanowelded carbon-nanotube-based solar microcells. Small 4:1313. https://doi.org/10.1002/smll.200701309

    Article  CAS  Google Scholar 

  8. Cheraghi M, Lorestani B, Yousefi N (2009) Effect of waste water on heavy metal accumulation in Hamedan Province vegetables. Int J Bot 5:90–193. https://doi.org/10.3923/ijb.2009.190.193

    Article  Google Scholar 

  9. Chirag MPN (2015) Nanotechnology: future of environmental pollution control. Int J Recent Innov Trends Comput Commun 3(2):079–081. https://doi.org/10.5296/emsd.v6i2.12047

    Article  Google Scholar 

  10. Choudhary BC, Paul D, Gupta T, Tetgure SR, Garole VJ, Borse AU, Garole DJ (2017) Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J Environ Sci 55:236–246. https://doi.org/10.1016/j.jes.2016.05.044

    Article  CAS  Google Scholar 

  11. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  12. De Morais A, Loiola LMD, Beneditti JE, Gonçalves AS, Avellaneda CAO, Clerici JH, Cotta MA, Nogueira AF (2013) Enhancing in the performance of functionalized multi-walled carbon Nanotubes into TiO2 films: the role of MWCNT addition. J Photochem Photobiol A Chem 251:78–84. https://doi.org/10.1016/j.jphotochem.2012.09.016

    Article  CAS  Google Scholar 

  13. Devatha CP, Thalla AK, Katte SY (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod 139:1425–1435. https://doi.org/10.1016/j.jclepro.2016.09.019

    Article  CAS  Google Scholar 

  14. Fan ZY, Razavi H, Do JW, Moriwaki A, Ergen O, Chueh YL, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 2009(8):648. https://doi.org/10.1038/nmat2493

    Article  CAS  Google Scholar 

  15. Furasova A, Calabró E, Lamanna E, Tiguntseva E, Ushakova E, Ubyivovk E, Mikhailovskii V, Zakhidov A, Makarov S, DiCarlo A (2018) Resonant Silicon Nanoparticles for Enhanced Light Harvesting in Halide Perovskite Solar Cells. Adv Opt Mater 6:1800576. https://doi.org/10.1002/adom.201800576

    Article  CAS  Google Scholar 

  16. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082. https://doi.org/10.1021/nl100161z

    Article  CAS  Google Scholar 

  17. Gayathri Manju B, Raji P (2019) Green synthesis, characterization, and antibacterial activity of lime-juice-mediated copper–nickel mixed ferrite nanoparticles. Appl Phys A126:156. https://doi.org/10.1007/s00339-020-3313-2

    Article  CAS  Google Scholar 

  18. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  19. Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA (2008) Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A91:241.–6.219. https://doi.org/10.1007/s00339-008-4420-7

    Article  CAS  Google Scholar 

  20. Huang P, Ye Z, Xie W, Chen Q, Li J, Xu Z, Yao M (2013) Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI)particles. Water Res 47:4050–4058. https://doi.org/10.1016/j.watres.2013.01.054

    Article  CAS  Google Scholar 

  21. Hussain CM (2018) Handbook of nanomaterials for industrial applications. Elsevier

    Google Scholar 

  22. Hussain CM (2020a) The ELSI handbook of nanotechnology: risk, safety, ELSI and commercialization. Wiley

    Book  Google Scholar 

  23. Hussain CM (2020b) Handbook of functionalized nanomaterials for industrial applications. Elsevier

    Google Scholar 

  24. Hussain CM (2020c) Handbook of manufacturing applications of nanomaterials. Elsevier

    Google Scholar 

  25. Hussain CM (2020d) Handbook of polymer nanocomposites for industrial applications. Elsevier

    Google Scholar 

  26. Hussain CM, Mishra AK (2019) Nanotechnology in environmental science (2 vols). Wiley

    Google Scholar 

  27. Jayarambabu N, Akshaykranth A, Venkatappa Rao T, Venkateswara Rao K, Rakesh Kumar R (2019) Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Mater Lett 259:126813. https://doi.org/10.1016/j.matlet.2019.126813

    Article  CAS  Google Scholar 

  28. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 8:55–60. https://doi.org/10.1016/j.colsurfb.2008.09.021

    Article  CAS  Google Scholar 

  29. Law M, Greene LE, Radenovic A, Kuykendall T, Liphardt J, Yang P (2006) ZnO−Al2O3 and ZnO−TiO2 core−shell nanowire dye-sensitized solar cells. J Phys Chem B 110(45):22652. https://doi.org/10.1021/jp0648644

    Article  CAS  Google Scholar 

  30. Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692. https://doi.org/10.1021/nl073296g

    Article  CAS  Google Scholar 

  31. Liang C, Jie Z, Wei L, Rui Z, Jian Y, Ruiyuan H, Xing’ao L, Wei H (2018) A facile and green approach to synthesize mesoporous anatase TiO2 nanomaterials for efficient dye-sensitized and hole-conductor-free perovskite solar cells. ACS Sustain Chem Eng 6(4):5588–5597. https://doi.org/10.1021/acssuschemeng.8b00607

    Article  CAS  Google Scholar 

  32. Lim J-W, Cho D-Y, Jihoon-Kim, Na S-I, Kim H-K (2012) Simple brush-painting of flexible and transparent Ag nanowire network electrodes. Sol Energy Mater Sol Cells 107:348–354. https://doi.org/10.1016/j.solmat.2012.07.012

    Article  CAS  Google Scholar 

  33. Ling SK, Tian HY, Wang S, Rufford T, Zhu ZH, Buckley CE (2011) KOH catalysed preparation of activated carbon aerogels for dye adsorption. J Colloid Interface Sci 357:157–162. https://doi.org/10.1016/j.jcis.2011.01.092

    Article  CAS  Google Scholar 

  34. Lou L, Osemwegie O, Ramkumar SS (2020) Functional nanofibers and their applications. Ind Eng Chem Res 59(13):5439–5455. https://doi.org/10.1021/acs.iecr.9b07066

    Article  CAS  Google Scholar 

  35. Lu H, Wang J, Stoller M, Wang T, Ying B, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10. https://doi.org/10.1155/2016/4964828

    Article  CAS  Google Scholar 

  36. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10:161–165

    Google Scholar 

  37. Matos J, García A, Poon PS (2010) Environmental green chemistry applications of nanoporous carbons. J Mater Sci 45(18):4934–4944. https://doi.org/10.1007/s10853-009-4184-2

    Article  CAS  Google Scholar 

  38. Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73:294–301. https://doi.org/10.1016/j.seppur.2010.04.016

    Article  CAS  Google Scholar 

  39. Mehdizadeh P, Orooji Y, Amiri O, Salavati-Niasari M, Moayedi H (2019) Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J Clean Prod 252:119765. https://doi.org/10.1016/j.jclepro.2019.119765

    Article  CAS  Google Scholar 

  40. Milena LG, da Silva F, da Costa MM, de Oliveira HP (2019) Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Appl Nanosci 10:1073–1081. https://doi.org/10.1007/s13204-019-01181-4

    Article  CAS  Google Scholar 

  41. Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-22112-3

    Article  CAS  Google Scholar 

  42. Mondal S, Roy N, Laskar RA, Ismali SK, Basu S, Mandal D, Begum NA (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. J Colloid Surf B Biointerface 82:497–504. https://doi.org/10.1016/j.colsurfb.2010.10.007

    Article  CAS  Google Scholar 

  43. Mueller NC, Nowack B (2009) Nanotechnology developments for the environment sector (Report of the Observatory NANO)

    Google Scholar 

  44. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590. https://doi.org/10.1016/j.matlet.2008.08.044

    Article  CAS  Google Scholar 

  45. Oh CW, Areerob Y (2019) A new aspect for band gap energy of graphene-Mg2CuSnCoO6-gallic acid as a counter electrode for enhancing dye- sensitized solar cell performance. ACS Appl Mater Interfaces 11(42):38859–38867. https://doi.org/10.1021/acsami.9b14500

    Article  CAS  Google Scholar 

  46. Olajire AA, Mohammed AA (2019) Green synthesis of bimetallic PdcoreAushell nanoparticles for enhanced solid-phase photodegradation of low-density polyethylene film. J Mol Struct 1206:127724. https://doi.org/10.1016/j.molstruc.2020.127724

    Article  CAS  Google Scholar 

  47. Ozkan ZY, Cakirgoz M, Kaymak ES, Erdim E (2017) Rapid decolorization of textile wastewater by green synthesized iron nanoparticles. Water Sci Technol 77(2):511–517. https://doi.org/10.2166/wst.2017.559

    Article  CAS  Google Scholar 

  48. Parashar UK, Saxena PS (2009) Bioinspired synthesis of silver nanoparticles. J Nanomater 4:159–166

    Google Scholar 

  49. Park JH, Lee TW, Kang MG (2008) Growth, detachment and transfer of highly-ordered TiO2nanotube arrays: use in dye-sensitized solar cells. Chem Commun:2867–2869. https://doi.org/10.1039/B800660A

  50. Patra JK, Baek K (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater 2014:417305. https://doi.org/10.1155/2014/417305

    Article  CAS  Google Scholar 

  51. Pendergast MTM, Nygaard JM, Ghosh AK, Hoek EMV (2010) Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261:255–263. https://doi.org/10.1016/j.desal.2010.06.008

    Article  CAS  Google Scholar 

  52. Prakash A, Sharma S, Ahmad N, Ghosh A, Sinha P (2011) Synthesis of AgNps By Bacillus cereus bacteria and their antimicrobial potential. J Biomater Nanobiotech 2(2):156. https://doi.org/10.4236/jbnb.2011.22020

    Article  CAS  Google Scholar 

  53. Raghunandan D, Bedre MD, Basavaraja S et al (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B: Biointerfaces 79:235–240. https://doi.org/10.1016/j.colsurfb.2010.04.003

    Article  CAS  Google Scholar 

  54. Ramadan ABA (2009) Air pollution monitoring and use of nanotechnology based solid state gas sensors in greater CAIRO area, Egypt. Nanomater Risks Benefits:265–273. https://doi.org/10.1007/978-1-4020-9491-0_20

  55. Ramesh V, Raja S, Arivalagan P, Thivaharan V (2019) Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J Photochem Photobiol B Biol 203:11760. https://doi.org/10.1016/j.jphotobiol.2019.111760

    Article  CAS  Google Scholar 

  56. Ran N, Zhao L, Chen Z, Tao J (2008) Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem 10(4):361–372. https://doi.org/10.1039/B716045C

    Article  CAS  Google Scholar 

  57. Ravikumar S, Sudakaran SV, Ravichandran K, Pulimi M, Natarajan C, Mukherjee A (2018) Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J Clean Prod 210:767–776. https://doi.org/10.1016/j.jclepro.2018.11.108

    Article  CAS  Google Scholar 

  58. Ravindra S, Murali Mohan Y, Narayana Reddy N, Mohana Raju K (2010) Fabrication of antibacterial cotton fibres loaded with silver nanoparticles via “green approach”. Colloids Surf A Physicochem Eng Asp 367:31–40. https://doi.org/10.1016/j.colsurfa.2010.06.013

    Article  CAS  Google Scholar 

  59. Rosales E, Meijide J, Pazos M, Sanromán MA (2017) Challenges and recent advances in biochar as low-cost biosorbent: from batch assays to continuous-flow systems. Bioresour Technol 246:176–192. https://doi.org/10.1016/j.biortech.2017.06.084

    Article  CAS  Google Scholar 

  60. Saran S, Kaustubha M (2020) Facile green synthesis of magnetically separable AuPt@TiO2 nanocomposite for efficient catalytic reduction of organic pollutants and selective oxidation of glycerol. J Alloys Compd 830:154636. https://doi.org/10.1016/j.jallcom.2020.154636

    Article  CAS  Google Scholar 

  61. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 1:1. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  Google Scholar 

  62. Singh J, Singh N, Rathi A et al (2017) Facile approach to synthesize and characterization of silver nanoparticles by using mulberry leaves extract in aqueous medium and its application in antimicrobial activity. J Nanostruct 7:134–140. https://doi.org/10.22052/jns.2017.02.007

    Article  CAS  Google Scholar 

  63. Sinha AK, Suzuki K, Takahara M, Azuma H, Nonaka T, Fukumoto K (2007) Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew Chem 119(16):2949–2952. https://doi.org/10.1002/anie.200605048

    Article  CAS  Google Scholar 

  64. Stone V, Johnston H, Clift MJ (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 6(4):331–340. https://doi.org/10.1109/tnb.2007.909005

    Article  Google Scholar 

  65. Su C (2017) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: A review of recent literature. J Hazard Mater 322:48–84. https://doi.org/10.1016/j.jhazmat.2016.06.060

    Article  CAS  Google Scholar 

  66. Tala-Ighil R (2016) Nanomaterials in solar cells. In: Aliofkhazraei M, Makhlouf A (eds) Handbook of nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15266-0_26

    Chapter  Google Scholar 

  67. Tan NPB, Paclijan SS, Ali HNM, Hallazgo CMJS, Lopez CJF, Ebora YC (2019) Solution blow spinning (SBS) nanofibers for composite air filter masks. ACS Appl Nano Mater 2(4):2475–2483. https://doi.org/10.1021/acsanm.9b00207

    Article  CAS  Google Scholar 

  68. Tauheeda R, Palwasha M, Tayyaba S, Sammia S, Muhammad AA (2020) Green synthesis of silver nickel bimetallic nanoparticles using plant extract of Salvadora persica and evaluation of their various biological activities. Mater Res Express 6(12):1250. https://doi.org/10.1088/2053-1591/ab74fc

    Article  CAS  Google Scholar 

  69. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69. https://doi.org/10.1080/10408410701710442

    Article  CAS  Google Scholar 

  70. Vijaya Kumar P, Kala MJ, Prakash KS (2019) Green synthesis derived Pt nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng 7(3):103146. https://doi.org/10.1016/j.jece.2019.103146

    Article  CAS  Google Scholar 

  71. Wang S, Ng CW, Wang W, Li Q, Li L (2012) A comparative study on the adsorption of acid and reactive dyes on multiwall carbon nanotubes in single and binary dye systems. J Chem Eng Data 57:1563–1569. https://doi.org/10.1021/je3001552

    Article  CAS  Google Scholar 

  72. Wei Guo K (2011) Green nanotechnology of trends in future energy. Recent Pat Nanotechnol 5(2):76–88. https://doi.org/10.2174/187221011795909198

    Article  Google Scholar 

  73. Xu L, Wang J (2017) The application of graphene-based materials for the removal of heavy metals and radionuclides from water and wastewater. Crit Rev Environ Sci Technol 47:1042–1105. https://doi.org/10.1080/10643389.2017.1342514

    Article  CAS  Google Scholar 

  74. Yu-Cheng C, Yang W-C, Che-Ming C, Che-Ming H, Po-Chun H, Lin-Juann C (2009) Controlled growth of ZnO nanopagoda arrays with varied lamination and apex angle. Cryst Growth Des 9(7):3161–6167. https://doi.org/10.1021/cg801172h

    Article  CAS  Google Scholar 

  75. Zahra V, Omid T, Ali N (2018) Rapid biosynthesis of novel Cu/Cr/Ni trimetallic oxide nanoparticles with antimicrobial activity. J Environ Chem Eng 6:1898. https://doi.org/10.1016/j.jece.2018.02.038

    Article  CAS  Google Scholar 

  76. Zhang L, Fan L, Li Z, Shi E, Li X, Li H, Ji C, Jia Y, Wei J, Wang K, Zhu H, Wu D, Cao A (2011) Graphene-CdSe nanobelt solar cells with tunable configurations. Nano Res 4(9):891–900. https://doi.org/10.1007/s12274-011-0145-6

    Article  CAS  Google Scholar 

  77. Zhang F, Liu C, Hsu PC, Zhang CF, Liu N, Zhang J, Ryoung H, Lee HR, Lu Y, Qiu Y, Chu S, Cui Y (2016) Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett 16(6):3642–3649. https://doi.org/10.1021/acs.nanolett.6b00771

    Article  CAS  Google Scholar 

  78. Zhao G, Jiang L, He Y, Li J, Dong H, Wang X, Hu W (2011) Sulfonated graphene for persistent aromatic pollutant management. Adv Mater 23(24):3959–3963. https://doi.org/10.1002/adma.201101007

    Article  CAS  Google Scholar 

  79. Zhu J, Yu ZF, Fan SH, Cui Y (2010) Nanostructured photon management for high performance solar cells. Mater Sci Eng R70:330. https://doi.org/10.1016/j.mser.2010.06.018

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Dr. K. S. Prakash acknowledges Bharathidasan Government College for Women (Autonomous), Puducherry UT, India, for the infrastructure.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ravikumar, A., Prakash, K.S. (2021). Green and Sustainable Approaches of Nanoparticles. In: Handbook of Consumer Nanoproducts. Springer, Singapore. https://doi.org/10.1007/978-981-15-6453-6_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6453-6_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6453-6

  • Online ISBN: 978-981-15-6453-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics