Skip to main content

An Enhancement of Underwater Images Based on Contrast Restricted Adaptive Histogram Equalization for Image Enhancement

  • Conference paper
  • First Online:
Smart Innovations in Communication and Computational Sciences

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1168))

Abstract

Scattering of light and absorption color affects the images of underwater. Due to this visibility and contrast on underwater, images are reduced. Dark channel prior is used typically for restoration. Poor resolution and contrast are exhibited by the images of underwater due to scattering of light and absorption of it in the environment of underwater. Color is caused by this situation. Due to this, it is difficult to analyze the image of underwater in an efficient manner for the object identification. In this paper, adaptive histogram equalization (AHE)-based new underwater image enhancement technique is proposed to get enhanced results. In the formula of gray-level mapping, parameter β is introduced by AHE algorithm. In new histogram, the spacing between two adjacent gray levels is adjusted adaptively to take target function as information entropy. In image, excessive local area and gray pixel merger are avoided by this. Settings of camera will not affect the performance of AHE as shown by validation and various image processing application’s accuracy are enhanced. The results of image enhancement methods are measured using the metrics like underwater image quality measure (UIQM), underwater color image quality evaluation (UCIQE), and patch-based contrast quality index (PCQI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Signal Process. 2010, Art. no. 746052 (2010)

    Google Scholar 

  2. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Learn. 25(6), 713–724 (2003)

    Article  Google Scholar 

  3. He, D.-M., Seet, G.G.L.: Divergent-beam LiDAR imaging in turbid water. Opt. Lasers Eng. 41, 217–231 (2004)

    Article  Google Scholar 

  4. Schechner, Y.Y., Averbuch, Y.: Regularized image recovery in scattering media. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1655–1660 (2007)

    Article  Google Scholar 

  5. Güraksin, G.E., Köse, U., Deperlıoğlu, Ö.: Underwater image enhancement based on contrast adjustment via differential evolution algorithm. In: International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–5 (2016)

    Google Scholar 

  6. Gao, Y., Wang, J., Li, H., Feng, L.: Underwater image enhancement and restoration based on local fusion. J. Electron. Imaging 28(4), 043014 (2019)

    Article  Google Scholar 

  7. Anwar, S., Li, C., Porikli, F.: Deep underwater image enhancement. arXiv:1807.03528v1 [cs.CV], pp. 1–13 (2018)

  8. Wong, S.L., Paramesran, R., Taguchi, A.: Underwater image enhancement by adaptive gray world and differential gray-levels histogram equalization. Adv. Electr. Comput. Eng. 18(2), 109–117 (2018)

    Article  Google Scholar 

  9. Zhang, C., Zhang, X., Tu, D.: Underwater image enhancement by fusion. In: International Workshop of Advanced Manufacturing and Automation, pp. 81–92. Springer, Singapore (2017)

    Google Scholar 

  10. Ancuti, C.O., Ancuti, C., De Vleeschouwer, C., Bekaert, P.: Color balance and fusion for underwater image enhancement. IEEE Trans. Image Process. 27(1), 379–393 (2017)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Guo, J., Cong, R., Pang, Y., Wang, B.: Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans. Image Process. 25(12), 5664–5677 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Graph. Forum 28(1), 161–171 (2009)

    Article  Google Scholar 

  13. Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)

    Article  Google Scholar 

  14. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)

    Article  MathSciNet  Google Scholar 

  15. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Ocean. Eng. 41(3), 541–551 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Goyal, V., Shukla, A. (2021). An Enhancement of Underwater Images Based on Contrast Restricted Adaptive Histogram Equalization for Image Enhancement. In: Tiwari, S., Trivedi, M., Mishra, K., Misra, A., Kumar, K., Suryani, E. (eds) Smart Innovations in Communication and Computational Sciences. Advances in Intelligent Systems and Computing, vol 1168. Springer, Singapore. https://doi.org/10.1007/978-981-15-5345-5_25

Download citation

Publish with us

Policies and ethics