Skip to main content

Ancient DNA Study

Practical Aspects

  • Reference work entry
  • First Online:
The Handbook of Mummy Studies
  • 1002 Accesses

Abstract

The introduction of next generation sequencing into archaeogenetics transformed the field into a powerhouse of the genetic study of human history. Although the processing of ancient DNA sequencing data follows the same basic principle for that of high-quality modern genomes, there are properties specific to ancient DNA molecules that need to be taken into account during data processing and analysis. In this chapter, I summarize the up-to-date practice of key steps of ancient DNA sequence data, such as the removal of Illumina sequencing adapter, read mapping to the reference genome, tabulation of post-mortem chemical damages, estimation of contamination level, and genotype calling. For each step, I highlight the current practices and the underlying logic for them, as well as directions of future method development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  Google Scholar 

  • Bos KI, Schuenemann VJ, Golding GB et al (2011) A draft genome of Yersinia pestis from victims of the black death. Nature 478:506–510

    Article  Google Scholar 

  • Bos KI, Harkins KM, Herbig A et al (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497

    Article  Google Scholar 

  • Dabney J, Meyer M, Pääbo S (2013) Ancient DNA damage. Cold Spring Harb Perspect Biol 5:a012567

    Google Scholar 

  • Daly KG, Maisano Delser P, Mullin VE et al (2018) Ancient goat genomes reveal mosaic domestication in the Fertile Crescent. Science 361:85–88

    Article  Google Scholar 

  • DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  Google Scholar 

  • Feldman M, Harbeck M, Keller M et al (2016) A high-coverage Yersinia pestis genome from a sixth-century Justinianic Plague victim. Mol Biol Evol 33:2911–2923

    Article  Google Scholar 

  • Fu Q, Mittnik A, Johnson PLF et al (2013) A revised timescale for human evolution based on ancient mitochondrial genomes. Curr Biol 23:553–559

    Article  Google Scholar 

  • Furtwängler A, Reiter E, Neumann GU et al (2018) Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci Rep 8:14075

    Article  Google Scholar 

  • Gaunitz C, Fages A, Hanghøj K et al (2018) Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 360:111–114

    Article  Google Scholar 

  • Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  Google Scholar 

  • Hofmanová Z, Kreutzer S, Hellenthal G et al (2016) Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci U S A 113:6886–6891

    Article  Google Scholar 

  • Jeong C, Balanovsky O, Lukianova E et al (2019) The genetic history of admixture across inner Eurasia. Nat Ecol Evol 3:966–976

    Article  Google Scholar 

  • Jónsson H, Ginolhac A, Schubert M et al (2013) mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29:1682–1684

    Article  Google Scholar 

  • Keller A, Graefen A, Ball M et al (2012) New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nat Commun 3:698

    Article  Google Scholar 

  • Kircher M, Sawyer S, Meyer M et al (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40:e3–e3

    Article  Google Scholar 

  • Korneliussen TS, Albrechtsen A, Nielsen R et al (2014) ANGSD: analysis of next generation sequencing data. BMC Bioinf 15:356

    Article  Google Scholar 

  • Kousathanas A, Leuenberger C, Link V et al (2017) Inferring heterozygosity from ancient and low coverage genomes. Genetics 205:317–332

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  Google Scholar 

  • Link V, Kousathanas A, Veeramah K et al (2017) ATLAS: analysis tools for low-depth and ancient samples. bioRxiv 105346

    Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • Meyer M, Kircher M, Gansauge MT et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338:222–226

    Article  Google Scholar 

  • Meyer M, Arsuaga JL, de Filippo C et al (2016) Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531:504–507

    Article  Google Scholar 

  • Miller W, Drautz DI, Ratan A et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456:387–390

    Article  Google Scholar 

  • Orlando L, Ginolhac A, Zhang G et al (2013) Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74–78

    Article  Google Scholar 

  • Ottoni C, Van Neer W, De Cupere B et al (2017) The palaeogenetics of cat dispersal in the ancient world. Nat Ecol Evol 1:0139

    Article  Google Scholar 

  • Peltzer A, Jäger G, Herbig A et al (2016) EAGER: efficient ancient genome reconstruction. Genome Biol 17:60

    Article  Google Scholar 

  • Prüfer K (2018) snpAD: an ancient DNA genotype caller. Bioinformatics 34:4165–4171

    Article  Google Scholar 

  • Raghavan M, Skoglund P, Graf KE et al (2014) Upper palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505:87–91

    Article  Google Scholar 

  • Rasmussen M, Li Y, Lindgreen S et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:757–762

    Article  Google Scholar 

  • Rasmussen M, Guo X, Wang Y et al (2011) An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334:94–98

    Article  Google Scholar 

  • Renaud G, Stenzel U, Kelso J (2014) leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42:e141–e141

    Article  Google Scholar 

  • Renaud G, Slon V, Duggan AT et al (2015) Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol 16:224

    Article  Google Scholar 

  • Rohland N, Harney E, Mallick S et al (2015) Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos Trans R Soc B 370:20130624

    Article  Google Scholar 

  • Sawyer S, Krause J, Guschanski K et al (2012) Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS One 7:e34131

    Article  Google Scholar 

  • Schubert M, Lindgreen S, Orlando L et al (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88

    Article  Google Scholar 

  • Schuenemann VJ, Peltzer A, Welte B et al (2017) Ancient Egyptian mummy genomes suggest an increase of Sub-Saharan African ancestry in post-Roman periods. Nat Commun 8:15694

    Article  Google Scholar 

  • Skoglund P, Ersmark E, Palkopoulou E et al (2015) Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr Biol 25:1515–1519

    Article  Google Scholar 

  • Smith CI, Chamberlain AT, Riley MS et al (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217

    Article  Google Scholar 

  • The, 1000 Genomes Project Consortium (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  Google Scholar 

  • Verdugo MP, Mullin VE, Scheu A et al (2019) Ancient cattle genomics, origins, and rapid turnover in the Fertile Crescent. Science 365:173–176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choongwon Jeong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jeong, C. (2021). Ancient DNA Study. In: Shin, D.H., Bianucci, R. (eds) The Handbook of Mummy Studies. Springer, Singapore. https://doi.org/10.1007/978-981-15-3354-9_11

Download citation

Publish with us

Policies and ethics