Skip to main content

Multimodal Neuroimaging with Simultaneous fMRI and EEG

  • Living reference work entry
  • First Online:
Handbook of Neuroengineering

Abstract

Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are noninvasive techniques used to measure neural activity in the human brain. fMRI measures the magnetic resonance signal associated with hemodynamic changes driven by neural activity and has a good spatial resolution (2–3 mm isotropic) and low temporal resolution (1–3 s). Whereas EEG is used to record electrical activity in the brain with a millisecond-level temporal resolution but has a limited spatial resolution. By combining fMRI and EEG, it is possible to generate a high spatiotemporal resolution map of human brain function, which is critical for understanding complex dynamics of the human brain. Furthermore, EEG recordings during fMRI can be used to identify the sources of abnormal electrical activity in the brain (e.g., during epileptic seizures). This chapter discusses recent advances in the simultaneous recording of fMRI and EEG in humans. It focuses on the challenges of recording fMRI and EEG simultaneously, techniques for removing artifacts, experimental designs for fMRI and EEG studies, and methods for integrating fMRI and EEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ives, J.R., et al.: Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol. 87(6), 417–420 (1993)

    Article  Google Scholar 

  2. Goldman, R.I., et al.: Acquiring simultaneous EEG and functional MRI. Clin. Neurophysiol. 111(11), 1974–1980 (2000)

    Article  Google Scholar 

  3. Abreu, R., Leal, A., Figueiredo, P.: EEG-informed fMRI: a review of data analysis methods. Front. Hum. Neurosci. 12, 29 (2018)

    Article  Google Scholar 

  4. Simoes, M., et al.: Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2562–2565 (2017)

    Google Scholar 

  5. Poudel, G.R., et al.: Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps. Hum. Brain Mapp. 35(1), 257–269 (2014)

    Article  Google Scholar 

  6. Noth, U., et al.: Simultaneous electroencephalography-functional MRI at 3 t: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place. J. Magn. Reson. Imaging. 35(3), 561–571 (2012)

    Article  Google Scholar 

  7. Huster, R.J., et al.: Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32(18), 6053–6060 (2012)

    Article  Google Scholar 

  8. Michels, L., et al.: Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One. 5(4), e10298 (2010)

    Article  Google Scholar 

  9. Kaufmann, C., et al.: Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 129(Pt 3), 655–667 (2006)

    Article  Google Scholar 

  10. Laufs, H., et al.: EEG-correlated fMRI of human alpha activity. NeuroImage. 19(4), 1463–1476 (2003)

    Article  Google Scholar 

  11. Goldman, R.I., et al.: Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport. 13(18), 2487–2492 (2002)

    Article  Google Scholar 

  12. Liu, Z.M., He, B.: FMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints. NeuroImage. 39(3), 1198–1214 (2008)

    Article  Google Scholar 

  13. Poudel, G.R., Innes, C.R.H., Jones, R.D.: Distinct neural correlates of time-on-task and transient errors during a visuomotor tracking task after sleep restriction. NeuroImage. 77, 105–113 (2013)

    Article  Google Scholar 

  14. Poudel, G.R., Innes, C.R.H., Jones, R.D.: Temporal evolution of neural activity and connectivity during microsleeps when rested and following sleep restriction. NeuroImage. 174, 263–273 (2018)

    Article  Google Scholar 

  15. Ogawa, S., et al.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87, 9868–9872 (1990)

    Article  Google Scholar 

  16. Arthurs, O.J., Boniface, S.: How well do we understand the neural origins of the fMRI bold signal? Trends Neurosci. 25(3), 169–169 (2002)

    Google Scholar 

  17. Salek-Haddadi, A., et al.: Studying spontaneous EEG activity with fMRI. Brain Res. Rev. 43(1), 110–133 (2003)

    Article  Google Scholar 

  18. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during brain activation; the balloon model. Magn. Reson. Med. 39, 855–864 (1998)

    Article  Google Scholar 

  19. Logothetis, N.K., et al.: Neurophysiological investigation of the basis of the fMRI signal. Nature. 412(6843), 150–157 (2001)

    Article  Google Scholar 

  20. Lindquist, M.A., et al.: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. NeuroImage. 45(1 Suppl), S187–S198 (2009)

    Article  Google Scholar 

  21. Menon, R.S., et al.: BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med. 33(3), 453 (1995)

    Article  Google Scholar 

  22. Hu, X., Yacoub, E.: The story of the initial dip in fMRI. NeuroImage. 62(2), 1103–1108 (2012)

    Article  Google Scholar 

  23. Gras, V., et al.: Optimizing bold sensitivity in the 7t human connectome project resting-state fMRI protocol using plug-and-play parallel transmission. NeuroImage. 195, 1–10 (2019)

    Article  Google Scholar 

  24. Kim, S.-G., Ogawa, S.: Insights into new techniques for high resolution functional MRI. Curr. Opin. Neurobiol. 12(5), 607–615 (2002)

    Article  Google Scholar 

  25. Kashyap, S., et al.: Resolving laminar activation in human v1 using ultra-high spatial resolution fMRI at 7t. Sci. Rep. 8, 17063 (2018)

    Article  Google Scholar 

  26. Tsuchida, T.N., et al.: American clinical neurophysiology society: EEG guidelines introduction. J. Clin. Neurophysiol. 33(4), 301–302 (2016)

    Article  Google Scholar 

  27. Kirschstein, T., Kohling, R.: What is the source of the EEG? Clin. EEG Neurosci. 40(3), 146–149 (2009)

    Article  Google Scholar 

  28. Buzsaki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents--EEG, ECOG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  29. Cajochen, C., Foy, R., Dijk, D.J.: Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online. 2(3), 65–69 (1999)

    Google Scholar 

  30. Accolla, E.A., et al.: Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin. Neurophysiol. 122(1), 27–31 (2011)

    Article  Google Scholar 

  31. Makeig, S., Jung, T.P., Sejnowski, T.J.: Awareness during drowsiness: dynamics and electrophysiological correlates. Can. J. Exp. Psychol. 54(4), 266–273 (2000)

    Article  Google Scholar 

  32. Makeig, S., Jung, T.P.: Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Brain Res. Cogn. Brain Res. 4(1), 15–25 (1996)

    Article  Google Scholar 

  33. Brueggen, K., et al.: Early changes in alpha band power and dmn bold activity in Alzheimer’s disease: a simultaneous resting state EEG-fMRI study. Front. Aging Neurosci. 9, 319 (2017)

    Article  Google Scholar 

  34. Dang-Vu, T.T., et al.: Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. U. S. A. 105(39), 15160–15165 (2008)

    Article  Google Scholar 

  35. Liu, Y., et al.: Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb. Cortex. 26(2), 517–529 (2016)

    Google Scholar 

  36. Mullinger, K., et al.: Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla. Int. J. Psychophysiol. 67(3), 178–188 (2008)

    Article  Google Scholar 

  37. Hawsawi, H.B., Carmichael, D.W., Lemieux, L.: Safety of simultaneous scalp or intracranial EEG during MRI: a review. Front. Phys. 5, 42 (2017)

    Article  Google Scholar 

  38. Lemieux, L., et al.: Recording of EEG during fMRI experiments: patient safety. Magn. Reson. Med. 38(6), 943–952 (1997)

    Article  Google Scholar 

  39. Salek-Haddadi, A., et al.: EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn. Reson. Imaging. 21(10), 1159–1166 (2003)

    Article  Google Scholar 

  40. Srivastava, G., et al.: Ica-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. NeuroImage. 24(1), 50–60 (2005)

    Article  Google Scholar 

  41. Jonmohamadi, Y., et al.: Source-space ICA for EEG source separation, localization, and time-course reconstruction. NeuroImage. 101, 720–737 (2014)

    Article  Google Scholar 

  42. Toppi, J., et al.: Time-varying effective connectivity of the cortical neuroelectric activity associated with behavioural microsleeps. NeuroImage. 124(Pt A), 421–432 (2016)

    Article  Google Scholar 

  43. Bayer, M., Rubens, M.T., Johnstone, T.: Simultaneous EEG-fMRI reveals attention-dependent coupling of early face processing with a distributed cortical network. Biol. Psychol. 132, 133–142 (2018)

    Article  Google Scholar 

  44. Bonmassar, G., et al.: Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. NeuroImage. 13(6), 1035–1043 (2001)

    Article  Google Scholar 

  45. Portas, C.M., et al.: Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 28(3), 991–999 (2000)

    Article  Google Scholar 

  46. Menon, V., Crottaz-Herbette, S.: Combined EEG and fMRI studies of human brain function. Neuroimaging. 66(Pt A), 291 (2005)

    Google Scholar 

  47. Hall, D.A., et al.: “Sparse” temporal sampling in auditory fMRI. Hum. Brain Mapp. 7(3), 213–223 (1999)

    Article  Google Scholar 

  48. Schwarzbauer, C., et al.: Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. NeuroImage. 29(3), 774–782 (2006)

    Article  Google Scholar 

  49. Poudel, G.R., et al.: Neural correlates of decision-making during a Bayesian choice task. NeuroReport. 28(4), 193–199 (2017)

    Article  MathSciNet  Google Scholar 

  50. McGlashan, E.M., et al.: Imaging individual differences in the response of the human suprachiasmatic area to light. Front. Neurol. 9, 1022 (2018)

    Article  Google Scholar 

  51. Schabus, M., et al.: Neural correlates of sleep spindles as revealed by simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). J. Sleep Res. 15, 50–51 (2006)

    Google Scholar 

  52. Fang, L., et al.: Simultaneous EEG-fMRI reveals spindle-related neural correlates of human intellectual abilities during NREM sleep. Sleep Med. 40, E99–E99 (2017)

    Article  Google Scholar 

  53. Mullinger, K.J., Castellone, P., Bowtell, R.: Best current practice for obtaining high quality EEG data during simultaneous fMRI. J. Vis. Exp. (76) (2013)

    Google Scholar 

  54. Allen, P.J., Josephs, O., Turner, R.: A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage. 12(2), 230–239 (2000)

    Article  Google Scholar 

  55. Negishi, M., et al.: Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin. Neurophysiol. 115(9), 2181–2192 (2004)

    Article  Google Scholar 

  56. Niazy, R.K., et al.: Removal of fMRI environment artifacts from EEG data using optimal basis sets. NeuroImage. 28(3), 720–737 (2005)

    Article  Google Scholar 

  57. Ritter, P., Villringer, A.: Simultaneous EEG-fMRI. Neurosci. Biobehav. Rev. 30(6), 823–838 (2006)

    Article  Google Scholar 

  58. Chowdhury, M.E.H., et al.: Simultaneous EEG-fMRI: evaluating the effect of the EEG cap-cabling configuration on the gradient artifact. Front. Neurosci. 13, 690 (2019)

    Article  Google Scholar 

  59. Cunningham, C.J.B., et al.: Simultaneous EEG-fMRI in human epilepsy. Can. J. Neurol. Sci. 35(4), 420–435 (2008)

    Article  Google Scholar 

  60. Sartori, E., et al.: Gradient artifact removal in co-registration EEG/fMRI. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 4: Image Processing, Biosignal Processing, Modelling and Simulation. Biomechanics. 25, 1143–1146 (2010)

    Google Scholar 

  61. Freyer, F., et al.: Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction. NeuroImage. 48(1), 94–108 (2009)

    Article  Google Scholar 

  62. de Munck, J.C., et al.: The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage. 35(3), 1142–1151 (2007)

    Article  Google Scholar 

  63. Moosmann, M., et al.: Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. NeuroImage. 45(4), 1144–1150 (2009)

    Article  Google Scholar 

  64. Ryali, S., et al.: Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings. NeuroImage. 48(2), 348–361 (2009)

    Article  Google Scholar 

  65. Mantini, D., et al.: Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. NeuroImage. 34(2), 598–607 (2007)

    Article  Google Scholar 

  66. Chechile, R.A.: Independent component analysis: a tutorial introduction. J. Math. Psychol. 49(5), 426–426 (2005)

    MathSciNet  Google Scholar 

  67. Islam, M.K., Rastegarnia, A., Yang, Z.: Methods for artifact detection and removal from scalp EEG: a review. Clin. Neurophysiol. 46(4-5), 287–305 (2016)

    Article  Google Scholar 

  68. Acharjee, P.P., et al.: Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data. IEEE Trans. Biomed. Eng. 62(7), 1750–1758 (2015)

    Article  Google Scholar 

  69. Chowdhury, M.E.H., et al.: Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI (vol 84, pg 307, 2014). NeuroImage. 98, 547–547 (2014)

    Article  Google Scholar 

  70. Maziero, D., et al.: Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. NeuroImage. 138, 13–27 (2016)

    Article  Google Scholar 

  71. van der Meer, J.N., et al.: Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections-a validation of a real-time simultaneous EEG/fMRI correction method. NeuroImage. 125, 880–894 (2016)

    Article  Google Scholar 

  72. Abbott, D.E., et al.: Constructing carbon fiber motion-detection loops for simultaneous EEG-fMRI. Front. Neurol. 5, 260 (2015)

    Article  Google Scholar 

  73. Debener, S., et al.: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 t static magnetic field strength. Int. J. Psychophysiol. 67(3), 189–199 (2008)

    Article  Google Scholar 

  74. Grouiller, F., et al.: A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. NeuroImage. 38(1), 124–137 (2007)

    Article  Google Scholar 

  75. Wang, K., et al.: Clustering-constrained ICA for ballistocardiogram artifacts removal in simultaneous EEG-fMRI. Front. Neurosci. 12, 59 (2018)

    Article  Google Scholar 

  76. Mayeli, A., et al.: Real-time EEG artifact correction during fMRI using ICA. J. Neurosci. Methods. 274, 27–37 (2016)

    Article  Google Scholar 

  77. Masterton, R.A.J., et al.: Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. NeuroImage. 37(1), 202–211 (2007)

    Article  Google Scholar 

  78. Valdes-Sosa, P.A., et al.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30(9), 2701–2721 (2009)

    Article  Google Scholar 

  79. Dong, L., et al.: Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. NeuroImage. 99, 28–41 (2014)

    Article  Google Scholar 

  80. Daunizeau, J., et al.: Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage. 36(1), 69–87 (2007)

    Article  Google Scholar 

  81. Singh, M., Patel, P., Al-Dayeh, L.: FMRI of brain activity during alpha rhythm. International Society for Magnetic Resonance in Medicine, Concord, CA (1998)

    Google Scholar 

  82. Omata, K., et al.: Spontaneous slow fluctuation of EEG alpha rhythm reflects activity in deep-brain structures: a simultaneous EEG-fMRI study. PLoS One. 8(6), e66869 (2013)

    Article  Google Scholar 

  83. Ragazzoni, A., et al.: “Hit the missing stimulus”. A simultaneous EEG-fMRI study to localize the generators of endogenous ERPs in an omitted target paradigm. Sci. Rep. 9, 3684 (2019)

    Article  Google Scholar 

  84. Scheeringa, R., et al.: Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 67(3), 242–251 (2008)

    Article  Google Scholar 

  85. Jann, K., et al.: Bold correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 45(3), 903–916 (2009)

    Article  Google Scholar 

  86. Calhoun, V.D., et al.: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. NeuroImage. 30(2), 544–553 (2006)

    Article  Google Scholar 

  87. Moosmann, M., et al.: Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int. J. Psychophysiol. 67(3), 212–221 (2008)

    Article  Google Scholar 

  88. McKeown, M.J., et al.: Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6(3), 160–188 (1998)

    Article  Google Scholar 

  89. Kincses, Z.T., et al.: Model-free characterization of brain functional networks for motor sequence learning using fMRI. NeuroImage. 39(4), 1950–1958 (2008)

    Article  Google Scholar 

  90. Habas, C., Cabanis, E.A.: Dissociation of the neural networks recruited during a haptic object-recognition task: complementary results with a tensorial independent component analysis. Am. J. Neuroradiol. 29(9), 1715–1721 (2008)

    Article  Google Scholar 

  91. Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 103(37), 13848–13853 (2006)

    Article  Google Scholar 

  92. Jonmohamadi, Y., et al.: Constrained temporal parallel decomposition for EEG-fMRI fusion. J. Neural Eng. 16(1), 016017 (2019)

    Article  Google Scholar 

  93. Laufs, H., et al.: Where the BOLD signal goes when alpha EEG leaves. NeuroImage. 31, 1408 (2006)

    Article  Google Scholar 

  94. Spiers, H.J., Maguire, E.A.: Neural substrates of driving behaviour. NeuroImage. 36(1), 245–255 (2007)

    Article  Google Scholar 

  95. Hutchison, K., et al.: Cortical activation can be visualized during sleep using simultaneous EEG-fMRI. Sleep. 30, A36–A37 (2007)

    Google Scholar 

  96. Culham, J.C.: Functional neuroimaging: experimental design and analysis. In: Handbook of Functional Neuroimaging of Cognition, pp. 53–82. MIT Press, Cambridge, MA (2006)

    Google Scholar 

  97. Dale, A.M.: Optimal experimental design for event-related fMRI. Hum. Brain Mapp. 8(2-3), 109–114 (1999)

    Article  Google Scholar 

  98. Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291 (2000)

    Article  Google Scholar 

  99. Weissman, D., et al.: The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006)

    Article  Google Scholar 

  100. Mechelli, A., et al.: Comparing event-related and epoch analysis in blocked design fMRI. NeuroImage. 18(3), 806–810 (2003)

    Article  Google Scholar 

  101. Visscher, K.M., et al.: Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage. 19(4), 1694–1708 (2003)

    Article  Google Scholar 

  102. Fox, M.D., et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102(27), 9673–9678 (2005)

    Article  Google Scholar 

  103. Critchley, H.D., et al.: Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J. Neurosci. 20(8), 3033 (2000)

    Article  Google Scholar 

  104. Spiers, H., Maguire, E.: Decoding human brain activity during real-world experiences. Trends Cogn. Sci. 11(8), 356–365 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govinda R. Poudel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Poudel, G.R., Jones, R.D. (2022). Multimodal Neuroimaging with Simultaneous fMRI and EEG. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-2848-4_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2848-4_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2848-4

  • Online ISBN: 978-981-15-2848-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics